Open Access
Issue |
E3S Web Conf.
Volume 580, 2024
2024 2nd International Conference on Clean Energy and Low Carbon Technologies (CELCT 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 4 | |
Section | Energy System Modeling and Ecological Resource Management | |
DOI | https://doi.org/10.1051/e3sconf/202458001004 | |
Published online | 23 October 2024 |
- National Renewable Energy Laboratory: Best https://www.nrel.gov/pv/cell-efficiency.html (2024). [Google Scholar]
- J.Y. Kim, J.W. Lee, H.S. Jung, et al., High-Efficiency Perovskite Solar Cells, Chem. Rev. 120(15) (2020), 7867–7918. [CrossRef] [PubMed] [Google Scholar]
- D. Luo, X. Li, A. Dumont, et al., Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices, Adv. Mater. 33(30) (2021), e2006004. [CrossRef] [PubMed] [Google Scholar]
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency, Chem. Rev. 121(4) (2021), 22302291. [Google Scholar]
- J.W. Lee, S. Tan, S.I. Seok, et al., Rethinking the A cation in halide perovskites, Science 375(6583) (2022), eabj1186. [CrossRef] [PubMed] [Google Scholar]
- J.M. Hoffman, X. Che, S. Sidhik, et al., From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer, J. Am. Chem. Soc. 141(27) (2019), 10661–10676. [CrossRef] [PubMed] [Google Scholar]
- S. Zhang, F. Ye, X. Wang, et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells, Science 380(6643) (2023), 404–409. [CrossRef] [PubMed] [Google Scholar]
- J. Liang, Z. Zhang, Q. Xue, et al., A finely regulated quantum well structure in quasi-2D Ruddlesden– Popper perovskite solar cells with efficiency exceeding 20%, Energ. & Environ. Sci. 15(1) (2022), 296–310. [CrossRef] [Google Scholar]
- Y. Zhang, N.-G. Park, Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%, Energy Lett. 7(2) (2022), 757–765. [CrossRef] [Google Scholar]
- J. Zhang, Y. Sun, C. Huang, et al., Reduced OpenCircuit Voltage Loss of Perovskite Solar Cells via Forming p/p+ Homojunction and Interface Electric Field on the Surfaces of Perovskite Film, Adv. Energy Mater. 12(47) (2022), 2202542. [CrossRef] [Google Scholar]
- D.G. Billing, A. Lemmerer, Inorganic–organic hybrid materials incorporating primary cyclic ammonium cations: The lead bromide and chloride series, Cryst. Eng. Comm 11(8) (2009), 1549–1562. [CrossRef] [Google Scholar]
- J. Zhang, B. Yu, Y. Sun, et al., Minimized Energy Loss at the Buried Interface of p-i-n Perovskite Solar Cells via Accelerating Charge Transfer and Forming p–n Homojunction, Adv. Energy Mater. 13(19) (2023), 2300382. [CrossRef] [Google Scholar]
- W. Fu, H. Liu, X. Shi, et al., Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasi‐2D Perovskite Solar Cells, Adv. Funct. Mater. 29(25) (2019), 1900221. [CrossRef] [Google Scholar]
- J. Hu, I.W.H. Oswald, et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites, Nat. Commun. 10(1) (2019), 1276. [CrossRef] [Google Scholar]
- F. Zhang, D.H. Kim, H. Lu, et al., Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation, J. Am. Chem. Soc. 141(14) (2019), 5972–5979. [CrossRef] [PubMed] [Google Scholar]
- R. Chen, J. Wang, Z. Liu, et al., Reduction of bulk and surface defects in inverted methylammoniumand bromide-free formamidinium perovskite solar cells, Nat. Energy 8(8) (2023), 839–849. [CrossRef] [Google Scholar]
- M.E. Kamminga, H.-H. Fang, M.R. Filip, et al., Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids, Chem. Mater. 28(13) (2016), 4554–4562. [CrossRef] [Google Scholar]
- R. Lin, J. Xu, M. Wei, et al., All-perovskite tandem solar cells with improved grain surface passivation, Nature 603(7899) (2022), 73–78. [CrossRef] [PubMed] [Google Scholar]
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6(1) (1996), 15–50. [CrossRef] [Google Scholar]
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18) (1996), 3865–3868. [CrossRef] [Google Scholar]
- S. Grimme, J. Antony, S. Ehrlich, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, Phys. 132(15) (2010), 154104. [Google Scholar]
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7) (2011), 1456–1465. [CrossRef] [Google Scholar]
- P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24) (1994), 17953–17979. [CrossRef] [Google Scholar]
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12) (1976), 5188–5192. [CrossRef] [Google Scholar]
- T. Li, J. Xu, R. Lin, et al., Inorganic wide-bandgap perovskite subcells with dipole bridge for allperovskite tandems, Nat. Energy 8(6) (2023), 610620. [Google Scholar]
- C.J. Dahlman, R.M. Kennard, P. Paluch, et al., Dynamic Motion of Organic Spacer Cations in Ruddlesden–Popper Lead Iodide Perovskites Probed by Solid-State NMR Spectroscopy, Chem Mater. 33(2) (2021), 642–656. [CrossRef] [Google Scholar]
- J. Xue, R. Wang, X. Chen, et al., Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations, Science 371(6529) (2021), 636–640. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.