Open Access
Issue
E3S Web Conf.
Volume 580, 2024
2024 2nd International Conference on Clean Energy and Low Carbon Technologies (CELCT 2024)
Article Number 01013
Number of page(s) 5
Section Energy System Modeling and Ecological Resource Management
DOI https://doi.org/10.1051/e3sconf/202458001013
Published online 23 October 2024
  1. Wang P, Li Q, Wang S, Xiao T, Wu C. (2024) Thermo-economic and life cycle assessment of pumped thermal electricity storage systems with integrated solar energy contemplating distinct working fluids. Energy Conversion and Management, 318: 118895. https://doi.org/10.1016/j.enconman.2024.118895. [CrossRef] [Google Scholar]
  2. Swift G W. (1988) Thermoacoustic engines. the Journal of the Acoustical Society of America, 84(4): 1145–1180. https://doi.org/10.1121/1.396617. [CrossRef] [Google Scholar]
  3. Zhou Y, Luo E. (2009) Advance in Thermoacoustic Technology. Journal of Mechanical Engineering, 45(03):14–26. 10.3901/JME.2009.03.014. [CrossRef] [Google Scholar]
  4. Raspet R, Slaton W V, Hickey C J, Hiller R A. (2002) Theory of inert gas-condensing vapor thermoacoustics: Propagation equation. The Journal of the Acoustical Society of America, 112(4): 1414–1422. https://doi.org/10.1121/1.1508113. [CrossRef] [PubMed] [Google Scholar]
  5. Slaton W V, Raspet R, Hickey C J, Hiller R A. (2002) Theory of inert gas-condensing vapor thermoacoustics: Transport equations. The Journal of the Acoustical Society of America, 2002, 112(4): 1423–1430. https://doi.org/10.1121/1.1508114. [CrossRef] [PubMed] [Google Scholar]
  6. Meir A, Offner A, Ramon G Z. (2018) Lowtemperature energy conversion using a phasechange acoustic heat engine. Applied Energy, 231: 372–379. https://doi.org/10.1016/j.apenergy.2018.09.124. [CrossRef] [Google Scholar]
  7. Yang R, Blanc N, Ramon G Z. (2022) Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic heat pump. Energy Conversion and Management, 254: 115202. https://doi.org/10.1016/j.enconman.2021.115202. [CrossRef] [Google Scholar]
  8. Zhang L, Kang H, Ding X, Jiang Y, Wen J, Zhang P. (2024) Synthetical performance analysis of phasechange thermoacoustic regenerators and stacks. Applied Thermal Engineering, 236: 121607. https://doi.org/10.1016/j.applthermaleng.2023.121607. [CrossRef] [Google Scholar]
  9. Ren F, Li Q, Wang P. (2024) Investigation and optimization on a Y-shaped fins for phase change heat storage by rotational mechanism. Journal of Energy Storage, 94: 112436. https://doi.org/10.1016/j.est.2024.112436. [CrossRef] [Google Scholar]
  10. Muralidharan H, Hariharan N M, Perarasu V T, Sivashanmugam P, Kasthurirengan S. (2014) CFD simulation of thermoacoustic heat engine. Progress in Computational Fluid Dynamics, an International Journal, 2014, 14(2): 131–137. https://doi.org/10.1504/PCFD.2014.060143. [CrossRef] [Google Scholar]
  11. Tao S, Li Z, Li X, Xu J, Luo E, Chen G. (2024) On the nonlinear dynamic characteristics of forced acoustic oscillations in a heat-driven thermoacoustic engine. Nonlinear Dynamics, 112(11): 9001–9016. https://doi.org/10.1007/s11071-024-09542-7. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.