Open Access
Issue
E3S Web Conf.
Volume 580, 2024
2024 2nd International Conference on Clean Energy and Low Carbon Technologies (CELCT 2024)
Article Number 02005
Number of page(s) 6
Section Low Carbon and Energy Saving Technologies and Environmental Sustainability
DOI https://doi.org/10.1051/e3sconf/202458002005
Published online 23 October 2024
  1. Earth’s Annual Global Mean Energy Budget[J]. Bulletin of the American Meteorological Society, 1997, 78(2). [Google Scholar]
  2. J H, M S, R R, A L, V O. Global warming in the twenty-first century: an alternative scenario[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(18). [Google Scholar]
  3. Huang Linbin, Zhang Liming, Long Jun, Yu Dongsheng, Shi Xuezheng, Chen Hanrui et al. Effect of mapping scale on dryland soil organic carbon modeling under scenarios of elevated CO2 concentration[J]. Soil Journal, 2017, 54(3): 624–637. [Google Scholar]
  4. Sanz-Perez E S, Murdock C R, Didas S A, Jones C W. Direct Capture of CO2 from Ambient Air[J]. CHEMICAL REVIEWS, 2016, 116(19): 11840–11876. [CrossRef] [PubMed] [Google Scholar]
  5. Shi X Y, Xiao H, Azarabadi H, Song J Z, Wu X L, Chen X, Lackner K S. Sorbents for the Direct Capture of CO2 from Ambient Air[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59(18): 6984–7006. [CrossRef] [PubMed] [Google Scholar]
  6. Liang Y Z. Carbon Dioxide Capture from Flue Gas Using Regenerable Sodium-Based Sorbents[M]. 2003. [Google Scholar]
  7. Lee S C, Choi B Y, Lee S J, Jung S Y, Ryu C K, Kim J C: CO2 Absorption and Regeneration using Na and K Based Sorbents, Park S-E, Chang J-S, Lee K-W, editor, Studies in Surface Science and Catalysis: Elsevier, 2004: 527–530. [CrossRef] [Google Scholar]
  8. Zhao C, Chen X, Zhao C. CO2 Absorption Using Dry Potassium-Based Sorbents with Different Supports[J]. Energy & Fuels, 2009, 23(9): 4683–4687. [CrossRef] [Google Scholar]
  9. Gao H, Pishney S, Janik M J. First principles study on the adsorption of CO2 and H2O on the K2CO3 (001) surface[J]. SURFACE SCIENCE, 2013, 609: 140–146. [CrossRef] [Google Scholar]
  10. Liu H, Qin Q, Zhang R, Ling L, Wang B. Insights into the mechanism of the capture of CO2 by K2CO3 sorbent: a DFT study[J]. Physical Chemistry Chemical Physics, 2017, 19(35): 24357–24368. [CrossRef] [PubMed] [Google Scholar]
  11. Veselovskaya J V, Derevschikov V S, Shalygin A S, Yatsenko D A. K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air[J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 310. [Google Scholar]
  12. Goscianska J, Ziolek M, Gibson E, Daturi M. Mesomacroporous zirconia modified with niobia as support for platinum-Acidic and basic properties[J]. Catalysis Today, 2010, 152(1): 33–41. [CrossRef] [Google Scholar]
  13. Qin Q, Liu H, Zhang R, Ling L, Fan M, Wang B. Application of density functional theory in studying CO2 capture with TiO2-supported K2CO3 being an example[J]. APPLIED ENERGY, 2018, 231: 167–178. [CrossRef] [Google Scholar]
  14. Zhao C W, Guo Y F, Li C H, Lu S X. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents[J]. APPLIED ENERGY, 2014, 124: 241–247. [CrossRef] [Google Scholar]
  15. Wu Y, Cai T, Zhao W, Chen X, Liu H, Wang Y, Russell A G, Fan M, Liu D. First-principles and experimental studies of [ZrO(OH)]+ or ZrO(OH)2 for enhancing CO2 desorption kinetics-imperative for significant reduction of CO2 capture energy consumption[J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6(36): 17671–17681. [CrossRef] [Google Scholar]
  16. Haase F, Sauer J. The Surface Structure of Sulfated Zirconia:Periodic ab initio study of sulfuric acid adsorbed on ZrO2(101) and ZrO2(001)[J]. Journal of the American Chemical Society, 1998, 120(51): 13503–13512. [CrossRef] [Google Scholar]
  17. Jung K T, Bell A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. Journal of Molecular Catalysis A: Chemical, 2000, 163(1): 27–42. [CrossRef] [Google Scholar]
  18. Yao H, Toan S, Huang L, Fan M, Wang Y, Russell A G, Luo G, Fei W. TiO(OH)2 highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway[J]. Scientific Reports, 2017, 7(1): 2943. [CrossRef] [PubMed] [Google Scholar]
  19. Sanna A, Maroto-Valer M M. Potassium-based sorbents from fly ash for high-temperature CO2 capture[J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23(22): 22242–22252. [CrossRef] [PubMed] [Google Scholar]
  20. Nguyen M-T, Seriani N, Gebauer R. Water adsorption and dissociation on Fe2O3(0001): PBE+U calculations[J]. The Journal of Chemical Physics, 2013, 138(19): 194709. [CrossRef] [PubMed] [Google Scholar]
  21. Zhao W, Wu Y, Cai T, Zhang W, Chen X, Liu D. Density functional theory and reactive dynamics study of catalytic performance of TiO2 on CO2 desorption process with KHCO3/TiO2/Al2O3 sorbent[J]. Molecular Catalysis, 2017, 439: 143–154. [CrossRef] [Google Scholar]
  22. Huang L, Tang M, Fan M, Cheng H. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132–144. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.