Open Access
Issue |
E3S Web Conf.
Volume 580, 2024
2024 2nd International Conference on Clean Energy and Low Carbon Technologies (CELCT 2024)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 7 | |
Section | Low Carbon and Energy Saving Technologies and Environmental Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202458002013 | |
Published online | 23 October 2024 |
- Halder, P., Babaie, M., Salek, F., Shah, K., Stevanovic, S., Bodisco, T. A., & Zare, A. (2024). Performance, emissions and economic analyses of hydrogen fuel cell vehicles. Renewable and Sustainable Energy Reviews, 199, 114543. https://doi.org/10.1016/j.rser.2024.114543. [CrossRef] [Google Scholar]
- Hassan, Q., Azzawi, I. D., Sameen, A. Z., & Salman, H. M. (2023). Hydrogen fuel cell vehicles: Opportunities and challenges. Sustainability, 15(15), 11501. https://doi.org/10.3390/su151511501. [CrossRef] [Google Scholar]
- Fan, L., Tu, Z., & Chan, S. H. (2021). Recent development of hydrogen and fuel cell technologies: A review. Energy Reports, 7, 8421–8446. https://doi.org/10.1016/j.egyr.2021.08.003. [CrossRef] [Google Scholar]
- Ocko, I. B., & Hamburg, S. P. (2022). Climate consequences of hydrogen emissions. Atmospheric Chemistry and Physics, 22(14), 9349–9368. https://doi.org/10.5194/acp-22-9349-2022. [CrossRef] [Google Scholar]
- Hao, D., Wang, X., Zhang, Y., Wang, R., Chen, G., & Li, J. (2020). Experimental study on hydrogen leakage and emission of fuel cell vehicles in confined spaces. Automotive Innovation, 3, 111–122. https://doi.org/10.1007/s42154-020-00096-z. [CrossRef] [Google Scholar]
- Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 1–36. https://doi.org/10.1007/s10311-021-01322-8. [PubMed] [Google Scholar]
- Li Y., He Y., Wu B., & Wang H. (2012). Structure Design and Simulation of the Hydrogen Dilution Device in the Fuel Cell System. Shanghai Automotive (10), 3–6. doi:10.3969/j.issn.1007-4554.2012.10.01. [Google Scholar]
- Grande, C. A. (2012). Advances in pressure swing adsorption for gas separation. International Scholarly Research Notices, 2012(1), 982934. https://doi.org/10.5402/2012/982934. [Google Scholar]
- Singla, S., Shetti, N. P., Basu, S., Mondal, K., & Aminabhavi, T. M. (2022). Hydrogen production technologies-membrane based separation, storage and challenges. Journal of Environmental Management, 302, 113963. https://doi.org/10.1016/j.jenvman.2021.113963. [CrossRef] [PubMed] [Google Scholar]
- Alkemade, U. G., & Schumann, B. (2006). Engines and exhaust after treatment systems for future automotive applications. Solid State Ionics, 177(2632), 2291–2296. https://doi.org/10.1016/j.ssi.2006.05.051. [CrossRef] [Google Scholar]
- Haruta, M., Souma, Y., & Sano, H. (1982). Catalytic combustion of hydrogen—II. An experimental investigation of fundamental conditions for burner design. International Journal of Hydrogen Energy, 7(9), 729–736. https://doi.org/10.1016/0360-3199(82)90022-2. [CrossRef] [Google Scholar]
- Chen B. Design and Experimental Research on Exhaust Emission Disposal System for PEMFC. Master’s thesis, Wuhan University of Science and Technology, Wuhan China, May 2012. https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uu6QjzLNQjER9nQQwoPhQUtLBEhKopyCY3TcR1HCdLTSIzbJe4UO2932jd6eopoAHl9z2AjOXGNB6YEiKoRkn9OFHJNAe86tXusavvDqaqhDt0Bny7B0v0EjISMEWopvCS6XCUYNvZc6FxBr0-EEWh_ihMKcJJjNxEHBQvULwDYBw26esr0bvqkmZcECfsY=&uniplatform=NZKPT&language=CHS. [Google Scholar]
- Nguyen V. N., Deja, R., Peters, R., Blum, L., & Stolten, D. (2018). Study of the catalytic combustion of lean hydrogen-air mixtures in a monolith reactor. International journal of hydrogen energy, 43(36), 17520–17530. https://doi.org/10.1016/j.ijhydene.2018.07.126. [CrossRef] [Google Scholar]
- Norton, D. G., & Vlachos, D. G. (2005). Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners. Proceedings of the Combustion Institute, 30(2), 2473–2480. https://doi.org/10.1016/j.proci.2004.08.188. [CrossRef] [Google Scholar]
- Gong Z., Zhang C., Xiao F., & Ma J. (2009). Exhaust purification system for 5kW fuel cell system under simulated driving cycle. Chinese Journal of Environmental Engineering (10), 1839–1843. https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uszM8ZLQQqF3B2tjotSpnciR1UrpPZ5tD8KlXGMBJjf1Vy1A9OQTsJ7CAQFoYzZ0nR3qchvQr6WNWtyM3MrY5I8kwBZj31fETz9sxDi8mx1pXx35C1GViCZ6dh7Mk_GJANC1pWn9nQoRhaMxMBQ2r4N6o0QhS7kGG9DBt7GjYZNtyQVrvSk&uniplatform=NZKPT&language=CHS. [Google Scholar]
- Tang, A., Huangfu, Z., Zhou, Y., Cai, T., & Ni, Q. (2024). Experimental study of low-temperature combustion performance in hydrogen/air mixtures over Pt–Cu/HZSM-5/cordierite bimetallic catalysts. Case Studies in Thermal Engineering, 59, 104540. https://doi.org/10.1016/j.csite.2024.104540. [CrossRef] [Google Scholar]
- Shyam, A., Lara‐Curzio, E., Pandey, A., Watkins, T. R., & More, K. L. (2012). The thermal expansion, elastic and fracture properties of porous cordierite at elevated temperatures. Journal of the American Ceramic Society, 95(5), 1682–1691. https://doi.org/10.1111/j.1551-2916.2012.05125.x. [CrossRef] [Google Scholar]
- Kozhukhova, A. E., du Preez, S. P., & Bessarabov, D. G. (2021). Catalytic hydrogen combustion for domestic and safety applications: A critical review of catalyst materials and technologies. Energies, 14(16), 4897. https://doi.org/10.3390/en14164897. [CrossRef] [Google Scholar]
- Kozhukhova, A. E., Du Preez, S. P., Shuro, I., & Bessarabov, D. G. (2020). Development of a low purity aluminum alloy (Al6082) anodization process and its application as a platinum-based catalyst in catalytic hydrogen combustion. Surface and Coatings Technology, 404, 126483. https://doi.org/10.1016/j.surfcoat.2020.126483. [CrossRef] [Google Scholar]
- Kim, J., Yu, J., Lee, S., Tahmasebi, A., Jeon, C. H., & Lucas, J. (2021). Advances in catalytic hydrogen combustion research: Catalysts, mechanism, kinetics, and reactor designs. International Journal of Hydrogen Energy, 46(80), 40073–40104. https://doi.org/10.1016/j.ijhydene.2021.09.236. [CrossRef] [Google Scholar]
- Kozhukhova, A. E., du Preez, S. P., Malakhov, A. A., & Bessarabov, D. G. (2021). A thermally conductive Pt/AAO catalyst for hydrogen passive autocatalytic recombination. Catalysts, 11(4), 491. https://doi.org/10.3390/catal11040491. [CrossRef] [Google Scholar]
- Du Preez, S. P., Jones, D. R., Warwick, M. E. A., Falch, A., Sekoai, P. T., das Neves Quaresma, C. M., .. & Dunnill, C. W. (2020). Thermally stable Pt/Ti mesh catalyst for catalytic hydrogen combustion. International Journal of Hydrogen Energy, 45(33), 16851–16864. https://doi.org/10.1016/j.ijhydene.2020.04.112. [CrossRef] [Google Scholar]
- Vanhanen, J. P., Kauranen, P. S., & Lund, P. D. (1997). Operation experiences of a phosphoric acid fuel cell in a solar hydrogen energy system. International Journal of Hydrogen Energy, 22(7), 707–713. https://doi.org/10.1016/S0360-3199(96)00202-9. [CrossRef] [Google Scholar]
- Shen, K. Y., Park, S., & Kim, Y. B. (2020). Hydrogen utilization enhancement of proton exchange membrane fuel cell with anode recirculation system through a purge strategy. International journal of hydrogen energy, 45(33), 16773–16786. https://doi.org/10.1016/j.ijhydene.2020.04.147. [CrossRef] [Google Scholar]
- Singh, S. A., Vishwanath, K., & Madras, G. (2017). Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion. ACS applied materials & interfaces, 9(23), 19380–19388. https://doi.org/10.1021/acsami.6b08019. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.