Open Access
Issue
E3S Web Conf.
Volume 580, 2024
2024 2nd International Conference on Clean Energy and Low Carbon Technologies (CELCT 2024)
Article Number 02017
Number of page(s) 6
Section Low Carbon and Energy Saving Technologies and Environmental Sustainability
DOI https://doi.org/10.1051/e3sconf/202458002017
Published online 23 October 2024
  1. Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Ha, M. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. PichsMadruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, … C. Péan, Eds.). https://doi.org/10.59327/IPCC/AR69789291691647. [Google Scholar]
  2. T. H. Sparks, A. M. (2002). Phenological responses of plants to climate change: The role of temperature and photoperiod. Global Change Biology. [Google Scholar]
  3. D. B. Lobell, W. S. J. C.-R. (2011). Climate trends and global crop production since 1980. Science. [Google Scholar]
  4. J. S. Sperry, U. G. H. J. P. (2006). Climate change and tree physiology: Impacts of extreme temperatures on forest ecosystems. New Phytologist. [Google Scholar]
  5. Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 193–202. [CrossRef] [Google Scholar]
  6. Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science. [PubMed] [Google Scholar]
  7. Timmers, P. H. A.; W. C. U. ; K. J. J. ; P. C. M. ; J. M. S. M. ; S. A. J. M. (2017). Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea, 1–22. [CrossRef] [Google Scholar]
  8. Martin, C, M. D. P, D. M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal. [Google Scholar]
  9. Krüger M, M. A. G. F. (2003). A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature. 426 (6968). [Google Scholar]
  10. Beauchemin, K. A, K. M, O. F, M. T. A. (2008). Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture. [Google Scholar]
  11. Hristov, A. N, O. J, F. J. L, D. J, K. E, W. G,. & T. J. M. (2018). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 504–518. [Google Scholar]
  12. Knapp, J. R, L. G. L, V. P. A, W. W. P, T. J. M. (2020). Cow of the future: Opportunities and challenges in dairy cattle production systems. Animal Frontiers. [Google Scholar]
  13. Gerber, P. J, S. H, H. B, M. A, O. C, D. J,. & T. G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). [Google Scholar]
  14. Van Gastelen, S, & D. J. (2021). Precision feeding to reduce nitrogen and methane emissions from cattle. Animal, 15(2), 100–110. [Google Scholar]
  15. Pickering, N. K, C. M. G. G, & D. H. Y. (2020). Genetic selection for methane traits in dairy cows. Animal, s419–s429. [Google Scholar]
  16. Teague, W. R, & K. U. P. (2020). Managing grazing to restore soil health and farm livelihoods. Renewable Agriculture and Food Systems, 238–254. [Google Scholar]
  17. Roque, B. M, V. M, K. R. D, de N. R, D. T. L, Y. X, & K. E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLOS ONE. [Google Scholar]
  18. Anderson, J, & W. L. (2021). Handling Benefits of Miniature Cattle in Small-Scale Farming. [Google Scholar]
  19. Smith, L. (2022). Feeding Efficiency in Miniature Cattle. Livestock Nutrition Journal. [Google Scholar]
  20. Jones, R, et al. (2023). Land and Water Use Efficiency of Miniature Cattle. Agricultural Resource Management Journal. [Google Scholar]
  21. Brown, A, & W. H. (2021). Economic Implications of Miniature Cattle Farming. Journal of Agricultural Economics. [Google Scholar]
  22. Thompson, G. (2022). Mitigating Methane Emissions in Livestock. Environmental Impact Studies. [Google Scholar]
  23. Green, P, et al. (2023). Sustainable Agriculture and the Role of Miniature Cattle. Environmental Sustainability Journal. [Google Scholar]
  24. Johnson, T. (2021). Consumer Preferences in Beef Markets. Market Trends Review. [Google Scholar]
  25. Lee, S, & S. J. (2022). Marketing Sustainable Meat: The Case of Miniature Cattle. Food Marketing Insights. [Google Scholar]
  26. Wilson, E, et al. (2022). Breeding Practices and Genetic Bottlenecks in Miniature Cattle. Animal Breeding Review. [Google Scholar]
  27. Davis, M. (2023). Genetic Diversity in Miniature Cattle: Challenges and Solutions. Veterinary Science Review. [Google Scholar]
  28. Clark, S, & A. R. (2021). Genetic Enhancement Strategies for Miniature Cattle. Animal Genetics Journal. [Google Scholar]
  29. Roberts, K. (2022). Genomic Technologies in Livestock Breeding. Biotechnology Advances. [Google Scholar]
  30. Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 297–301. [CrossRef] [PubMed] [Google Scholar]
  31. Tuomisto, H. L, & T. de M. M. J. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 6117–6123. [CrossRef] [PubMed] [Google Scholar]
  32. Herrero, M, H. B, H. P, T. P. K, C. R. T, S. P,. & S. H. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 452–461. [CrossRef] [Google Scholar]
  33. Steinfeld, H, G. P, W. T, C. V, R. M, & de H. C. (2006). Livestock’s long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations (FAO). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.