Open Access
Issue
E3S Web Conf.
Volume 583, 2024
Innovative Technologies for Environmental Science and Energetics (ITESE-2024)
Article Number 03017
Number of page(s) 10
Section Oil, Gas, and Fuel Research and Applications
DOI https://doi.org/10.1051/e3sconf/202458303017
Published online 25 October 2024
  1. V. Sveshnikov, Hydrodrives of tools. Machinery Engineering, Moscow (2008) [Google Scholar]
  2. O. Krol, Modeling of Worm Gear Design with Non-clearance Engagement. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). ICIE 2020. LNME, Springer, Cham, 36-46. (2022) doi: 10.1007/978-3-030-54814-8_5 [Google Scholar]
  3. O. Fomin, O. Logvinenko, O. Burlutsky, A. Rybin, Scientific Substantiation of Thermal Leveling for Deformations in the Car Structure, International Journal of Engineering & Technology, 7 (2018) doi:10.14419/ijet.v7i4.3.19721 [Google Scholar]
  4. P. Andrenko, A. Rogovyi, I. Hrechka, S. Khovanskyi, M. Svynarenko, Characteristics improvement of labyrinth screw pump using design modification in screw. J. Phys. Conf. Ser., 1741(01), 012024 (2021) doi: 10.1088/1742-6596/1741/1/012024 [CrossRef] [Google Scholar]
  5. V. Sveshnikov, Hydrodrives in modern mechanical engineering. Hydraulic and pneumatic, 28, 10-16 (2007) [Google Scholar]
  6. O. Romanchenko, Principles of design of specialized technological equipment. Diagnostyka, 23(1), 2022109 (2022) doi:10.29354/diag/146784 [CrossRef] [Google Scholar]
  7. R. Varbanets, O. Fomin, V. Píštěk, V. Klymenko, D. Minchev, A. Khrulev, V. Zalozh, P. Kučera, Acoustic Method for Estimation of Marine Low-Speed Engine Turbocharger Parameters. Journal of Marine Science and Engineering, 9(3), 321 (2021) doi: 0.3390/jmse9030321 [CrossRef] [Google Scholar]
  8. A. Rogovyi, V. Korohodskyi, A. Neskorozhenyi, I. Hrechka, S. Khovanskyi, Reduction of Granular Material Losses in a Vortex Chamber Supercharger Drainage Channel. In: Advances in Design, Simulation and Manufacturing V. DSMIE 2022 LNME, Springer, Cham, 218–226 (2022) doi: 10.1007/978-3-031-06044-1_21 [Google Scholar]
  9. D. Popov, Mechanics of hydro- and pneumodrives. MGTU, Moscow (2002) [Google Scholar]
  10. P. Andrenko, A. Rogovyi, I. Hrechka, S. Khovanskyi, M. Svynarenko, The Influence of the Gas Content in the Working Fluid on Parameters of the Hydraulic Motor’s Axial Piston. In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. LNME, Springer, Cham, 97-106 (2021) doi: 10.1007/978-3-030-77823-1_10 [Google Scholar]
  11. A. Halanay, C. Safta, F. Ursu, I. Ursu, Stability analysis for a nonlinear model of a hydraulic servomechanism in a servoelastic framework. Nonlinear Analysis: Real World Applications, 10, 1197-1209 (2009) doi: 10.1016/j.nonrwa.2007.12.009 [CrossRef] [Google Scholar]
  12. L. Wang, W. Book, J. Huggins, A hydraulic circuit for single rod cylinders Journal of Dynamic Systems, Measurement and Control, 134, 011019 (2012) doi: 10.1115/1.4004777 [CrossRef] [Google Scholar]
  13. Y. Sokolova, N. Azarenko, V. Sokolov, The synthesis of system of automatic control of equipment for machining materials with hydraulic drive. Eastern-Eur. J. Enterprise Technol., 2(2(68)), 56-60 (2014) doi: 10.15587/1729-4061.2014.23396 [CrossRef] [Google Scholar]
  14. V. Sokolov, O. Porkuian, O. Krol, Y. Baturin, Design Calculation of Electrohydraulic Servo Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. LNME, Springer, Cham, 1, 75-84 (2020) doi: 10.1007/978-3-030-50794-7_8 [Google Scholar]
  15. O. Fomin, A. Lovska, Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-Eur. J. Enterprise Technol., 2(7(110)), 6-14 (2021) doi: 10.15587/1729-4061.2021.220534 [CrossRef] [Google Scholar]
  16. R. Bishop, R. Dorf, Modern control systems. Prentice Hall (2011) [Google Scholar]
  17. V. Sokolov, V., O, Krol, Y. Baturin, Dynamics Research and Automatic Control of Technological Equipment with Electrohydraulic Drive. 2019 International Russian Automation Conference (RusAutoCon). IEEE (2019) doi: 10.1109/RUSAUTOCON.2019.8867652 [Google Scholar]
  18. V. Forental, M. Forental, F. Nazarov, Investigation of Dynamic Characteristics of the Hydraulic Drive with Proportional Control. Procedia Eng., 129, 695-701 (2015) doi: 10.1016/j.proeng.2015.12.093 [CrossRef] [Google Scholar]
  19. Y. Burennikov, L. Kozlov, V. Pyliavets, O. Piontkevych, Mechatronic hydraulic drive with regulator, based on artificial neural network. IOP Conf. Ser. Mater. Sci. Eng., 209, 012071 (2017) doi: 10.1088/1757-899X/209/1/012071 [CrossRef] [Google Scholar]
  20. Y. Yang, W. Peng, D. Meng, S. Zhu, H. Huang, Reliability analysis of direct drive electrohydraulic servo valves based on a wear degradation process and individual differences. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228, 621-630 (2014) doi: 10.1177/1748006X14541256 [CrossRef] [Google Scholar]
  21. D. Rybarczyk, Application of the MEMS accelerometer as the position sensor in linear electrohydraulic drive. Sensors, 21(4), 1479 (2021) doi: 10.3390/s21041479 [CrossRef] [Google Scholar]
  22. C. Guan, S. Pan, Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters, Control Engineering Practice, 16(11), 1275–1284 (2008) doi: 10.1016/j.conengprac.2008.02.002 [CrossRef] [Google Scholar]
  23. V. Sokolov, O. Krol, Installations criterion of deceleration device in volumetric hydraulic drive, Procedia Engineering, 206 (2017) doi: 10.1016/j.proeng.2017.10.575 [Google Scholar]
  24. V. Golubovsky, V. Konovalov, M. Doncova, Modelling the force action of a liquid on the shutter of a measuring transducer. E3S Web of Conferences, 157, 02007 (2020) doi: 10.1051/e3sconf/202015702007 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. V. Golubovsky, V. Konovalov, M. Doncova, Modelling static characteristics of angular velocity measuring transducer of the “nozzle-damper” type. J. Phys. Conf. Ser., Journal of Physics: Conference Series, 1614(1), 012084 (2020) doi: 10.1007/978- 3-030-85057-9_17 [CrossRef] [Google Scholar]
  26. V. Sokolov, Increased Measurement Accuracy of Average Velocity for Turbulent Flows in Channels of Ventilation Systems. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). LNME, Springer, Cham, 2, 1182-1190 (2021) doi: 10.1007/978-3-030-54817-9_137 [Google Scholar]
  27. B. Lurie, P. Enright, Classical Automation Control Methods. BHV-Petersburg, Saint-Petersburg (2004) [Google Scholar]
  28. K. Pupkov, N. Egupov, Methods of Classical and Modern Theory for Automation Control. Vol. 3. Synthesis of Controllers for Automation Control Systems. MSTU, Moscow (2004) [Google Scholar]
  29. M. Nuruzzaman, Modeling and Simulating in Simulink for Engineers and Scientists. Author-House, Bloomington (2004) [Google Scholar]
  30. A. Tewari, Modern Control Design with MATLAB and Simulink. John Wiley & Sons Ltd., Weinheim (2002) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.