Open Access
Issue |
E3S Web Conf.
Volume 583, 2024
Innovative Technologies for Environmental Science and Energetics (ITESE-2024)
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 7 | |
Section | Microwave, Laser, RF, UV and Solar Radiations | |
DOI | https://doi.org/10.1051/e3sconf/202458304011 | |
Published online | 25 October 2024 |
- J. He, Z. Cheng, B. Guo, Anomaly detection in satellite telemetry data using a sparse feature-based method, Sensors, 22(17), 6358, (2022), doi: https://doi.org/10.3390/s22176358. [CrossRef] [Google Scholar]
- S. Liu, S. Qiu, H. Li, M. Liu, Real-Time Telemetry-Based Recognition and Prediction of Satellite State Using TS-GCN Network, Electronics, 12(23), 4824, (2023), doi: https://doi.org/10.3390/electronics12234824. [CrossRef] [Google Scholar]
- S.V. Benevolsky, V.I. Mayorova, D.A. Grishko, N.N. Khanenya, Analysis of telemetry from the Yubileiny spacecraft, Mechanical Engineering and Computer Technologies, 13, pp. 59, (2011). [Google Scholar]
- V. Pilipenko, N. Yagova, N. Romanova, J. Allen, Statistical relationships between satellite anomalies at geostationary orbit and high-energy particles, Advances in Space Research, 37(6), pp. 1192-1205, (2006), doi: https://doi.org/10.1016/j.asr.2005.03.152. [CrossRef] [Google Scholar]
- A.O. Efitorov, I.N. Myagkova, V.R. Shiroky, S.A. Dolenko, Dst index forecasting based on machine learning methods, Space Research, 56(6), pp. 420-428, (2018), doi: http://dx.doi.org/10.31857/S002342060002493-0. [Google Scholar]
- E. Camporeale, The challenge of machine learning in space weather: Nowcasting and forecasting, Space weather, 17(8), pp. 1166-1207, (2019), doi: https://doi.org/10.1029/2018SW002061. [CrossRef] [Google Scholar]
- E. Camporeale, Machine Learning in Space Weather, 44th COSPAR Scientific Assembly, 3449, (2022). [Google Scholar]
- A. Iliopoulos, J. Violos, C. Diou, I. Varlamis, Detection of Anomalies in Multivariate Time Series Using Ensemble Techniques, IEEE Ninth International Conference on Big Data Computing Service and Applications, pp. 1-8, (2023) doi: https://doi.org/10.1109/BigDataService58306.2023.00007. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.