Open Access
Issue
E3S Web Conf.
Volume 588, 2024
Euro-Asian Conference on Sustainable Nanotechnology, Environment, & Energy (SNE2-2024)
Article Number 02011
Number of page(s) 17
Section Nanomaterials in Environment and Energy
DOI https://doi.org/10.1051/e3sconf/202458802011
Published online 08 November 2024
  1. Tang XX, Manthiram A, Goodenough JB. Copper ferrite revisited. Journal of solid state chemistry. 1989;79(2):250–62. [CrossRef] [Google Scholar]
  2. Masunga N, Mmelesi OK, Kefeni KK, Mamba BB. Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment. Journal of Environmental Chemical Engineering. 2019;7(3):103179. [CrossRef] [Google Scholar]
  3. Singh S, Yadav BC, Prakash R, Bajaj B. Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Applied Surface Science. 2011;257(24):10763–70. [CrossRef] [Google Scholar]
  4. Dey B, Bououdina M, Dhamodharan P, AsathBahadur S, Venkateshwarlu M, Manoharan C. Tuning the gas sensing properties of spinel ferrite NiFe2O4 nanoparticles by Cu doping. Journal of Alloys and Compounds. 2024;970:172711. [CrossRef] [Google Scholar]
  5. Manikandan V, Singh M, Yadav BC, Denardin JC. Fabrication of lithium substituted copper ferrite (Li-CuFe2O4) thin film as an efficient gas sensor at room temperature. Journal of Science: Advanced Materials and Devices. 2018;3(2):145–50. [CrossRef] [Google Scholar]
  6. Gadkari AB, Shinde TJ, Vasambekar PN. Ferrite gas sensors. IEEE Sensors journal. 2010;11(4):849–61. [Google Scholar]
  7. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. A survey on gas sensing technology. Sensors. 2012;12(7):9635–65. [CrossRef] [Google Scholar]
  8. Yang S, Jiang C, Wei S huai. Gas sensing in 2D materials. Applied Physics Reviews [Internet]. 2017 [cited 2024 Sep 24];4(2). Available from: https://pubs.aip.org/aip/apr/article/4/2/021304/279723 [Google Scholar]
  9. Yamazoe N, Miura N. Environmental gas sensing. Sensors and Actuators B: Chemical. 1994;20(2–3):95–102. [CrossRef] [Google Scholar]
  10. Feng S, Farha F, Li Q, Wan Y, Xu Y, Zhang T, et al. Review on smart gas sensing technology. Sensors. 2019;19(17):3760. [CrossRef] [PubMed] [Google Scholar]
  11. Kim ID, Rothschild A, Tuller HL. Advances and new directions in gas-sensing devices. Acta Materialia. 2013;61(3):974–1000. [CrossRef] [Google Scholar]
  12. Singh S, Yadav BC, Gupta VD, Dwivedi PK. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system. Materials Research Bulletin. 2012;47(11):3538–47. [CrossRef] [Google Scholar]
  13. Haija MA, Abu-Hani AF, Hamdan N, Stephen S, Ayesh AI. Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. Journal of Alloys and Compounds. 2017;690:461–8. [CrossRef] [Google Scholar]
  14. Madake SB, Hattali MR, Thorat JB, Pedanekar RS, Rajpure KY. Chemiresistive Gas Sensing Properties of Copper Substituted Zinc Ferrite Thin Films Deposited by Spray Pyrolysis. Journal of Elec Materi. 2021 Apr;50(4):2460–5. [CrossRef] [Google Scholar]
  15. Ebrahimi HR, Usefi H, Emami H, Amiri GR. Synthesis, characterization, and sensing performance investigation of copper cadmium ferrite nanoparticles. IEEE Transactions on Magnetics. 2018;54(10):1–5. [CrossRef] [Google Scholar]
  16. Kuznetsov MV, Morozov YuG, Belousova OV. Synthesis of copper ferrite nanoparticles. Inorg Mater. 2013 Jun;49(6):606–15. [CrossRef] [Google Scholar]
  17. Mulud FH, Dahham NA, Waheed IF. Synthesis and characterization of copper ferrite nanoparticles. In: IOP Conference Series: Materials Science and Engineering [Internet]. IOP Publishing; 2020 [cited 2024 Sep 24]. p. 072125. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/928/7/072125/meta [Google Scholar]
  18. Stolle A, Szuppa T, Leonhardt SE, Ondruschka B. Ball milling in organic synthesis: solutions and challenges. Chemical Society Reviews. 2011;40(5):2317–29. [CrossRef] [PubMed] [Google Scholar]
  19. Takacs L. Self-sustaining reactions induced by ball milling. Progress in materials science. 2002;47(4):355–414. [CrossRef] [Google Scholar]
  20. Cobos MÁ, Jiménez JA, Llorente I, de la Presa P, Hernando A. Ball milling and annealing effect in structural and magnetic properties of copper ferrite by ceramic synthesis. Journal of Alloys and Compounds. 2024;176206. [Google Scholar]
  21. Hench LL, West JK. The sol-gel process. Chem Rev. 1990 Jan 1;90(1):33–72. [CrossRef] [Google Scholar]
  22. Livage J. Sol-gel processes. Current Opinion in Solid State and Materials Science. 1997;2(2):132–8. [CrossRef] [Google Scholar]
  23. Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing [Internet]. Academic press; 2013 [cited 2024 Sep 24]. Available from: https://books.google.com/books?hl=en&lr=&id=CND1BAAAQBAJ&oi=fnd&pg= PP1&dq=Sol-gel&ots=aguOE7_haC&sig=EpnrqeScV6g9cXiR4WC-TIycUUQ [Google Scholar]
  24. Subha A, Shalini MG, Sahu B, Sahoo SC. Structural transformation and magnetic properties of copper ferrite nanoparticles prepared by sol–gel method. J Mater Sci: Mater Electron. 2018 Dec;29(24):20790–9. [CrossRef] [Google Scholar]
  25. Yang M, He J, He J, Cao J. Removal of tetracycline and ciprofloxacin from aqueous solutions using magnetic copper ferrite nanoparticles. Journal of Science: Advanced Materials and Devices. 2024;9(2):100717. [CrossRef] [Google Scholar]
  26. Gan YX, Jayatissa AH, Yu Z, Chen X, Li M. Hydrothermal synthesis of nanomaterials. Journal of Nanomaterials [Internet]. 2020 [cited 2024 Sep 24];2020. Available from: https://search.proquest.com/openview/0b5dac961163c6a8a3841ed8ce470525/1?pq- origsite=gscholar&cbl=237784 [Google Scholar]
  27. Pirajno F. Hydrothermal processes and mineral systems [Internet]. Springer Science & Business Media; 2008 [cited 2024 Sep 24]. Available from: https://books.google.com/books?hl=en&lr=&id=nVEyYex9IlkC&oi=fnd&pg=PR8 &dq=hydrothermal&ots=3xzWAzZ2Ki&sig=PomchhOsRHmBQ3cPwABEQv72T PE [Google Scholar]
  28. Kurian J, Lahiri BB, Mathew MJ, Philip J. High magnetic fluid hyperthermia efficiency in copper ferrite nanoparticles prepared by solvothermal and hydrothermal methods. Journal of Magnetism and Magnetic Materials. 2021;538:168233. [CrossRef] [Google Scholar]
  29. Petcharoen K, Sirivat A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B. 2012;177(5):421–7. [CrossRef] [Google Scholar]
  30. Jiao ZB, Luan JH, Miller MK, Chung YW, Liu CT. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Materials Today. 2017;20(3):142–54. [CrossRef] [Google Scholar]
  31. Agouriane E, Rabi B, Essoumhi A, Razouk A, Sahlaoui M, Costa BFO, et al. Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by co-precipitation. J Mater Environ Sci. 2016;7(11):4116–20. [Google Scholar]
  32. Dos Santos HCL, Gonçalves MA, da Cas Viegas A, Figueira BAM, da Luz PTS, da Rocha Filho GN, et al. Tungsten oxide supported on copper ferrite: a novel magnetic acid heterogeneous catalyst for biodiesel production from low quality feedstock. RSC advances. 2022;12(53):34614–26. [CrossRef] [PubMed] [Google Scholar]
  33. Nüchter M, Ondruschka B, Bonrath W, Gum A. Microwave assisted synthesis–a critical technology overview. Green chemistry. 2004;6(3):128–41. [CrossRef] [Google Scholar]
  34. Hayes BL. Recent advances in microwave-assisted synthesis. Aldrichimica Acta. 2004;37(2):66–77. [Google Scholar]
  35. Dallinger D, Kappe CO. Microwave-Assisted Synthesis in Water as Solvent. Chem Rev. 2007 Jun 1;107(6):2563–91. [CrossRef] [PubMed] [Google Scholar]
  36. Karakaş ZK. A comprehensive study on the production and photocatalytic activity of copper ferrite nanoparticles synthesized by microwave-assisted combustion method as an effective photocatalyst. Journal of Physics and Chemistry of Solids. 2022;170:110927. [CrossRef] [Google Scholar]
  37. Prince E, Treuting RG. The structure of tetragonal copper ferrite. Acta Crystallographica. 1956;9(12):1025–8. [Google Scholar]
  38. Lakhani VK, Pathak TK, Vasoya NH, Modi KB. Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sciences. 2011;13(3):539–47. [Google Scholar]
  39. Zhuravlev VA, Minin RV, Itin VI, Lilenko IY. Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion. Journal of Alloys and Compounds. 2017;692:705–12. [CrossRef] [Google Scholar]
  40. Kumar ER, Reddy PSP, Devi GS, Sathiyaraj S. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M= Zn, Cu, Ni, and Co) ferrite nanoparticles. Journal of Magnetism and Magnetic Materials. 2016;398:281–8. [CrossRef] [Google Scholar]
  41. George J, Abraham KE. The structural phase change of copper ferrite and its gas- sensing properties. J Mater Sci: Mater Electron. 2021 May;32(10):13220–38. [CrossRef] [Google Scholar]
  42. Xu J, Wang T, Wei M, Yang Y, Li D, Yu H, et al. Improved gas sensing properties of copper ferrite nanofibers decorated with polyoxometalate electron acceptor toward ppb-level NO2 detection. Journal of Industrial and Engineering Chemistry [Internet]. 2024 [cited 2024 Sep 24]; Available from: https://www.sciencedirect.com/science/article/pii/S1226086X24001461 [Google Scholar]
  43. Wang X, Gong L, Zhang D, Fan X, Jin Y, Guo L. Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sensors and Actuators B: Chemical. 2020;322:128615. [CrossRef] [Google Scholar]
  44. Khandekar MS, Tarwal NL, Patil JY, Shaikh FI, Mulla IS, Suryavanshi SS. Liquefied petroleum gas sensing performance of cerium doped copper ferrite. Ceramics International. 2013;39(5):5901–7. [CrossRef] [Google Scholar]
  45. Manikandan V, Singh M, Yadav BC, Vigneselvan S. Room-Temperature Gas Sensing Properties of Nanocrystalline-Structured Indium-Substituted Copper Ferrite Thin Film. Journal of Elec Materi. 2018 Nov;47(11):6366–72. [CrossRef] [Google Scholar]
  46. Kumar ER, Jayaprakash R, Devi GS, Reddy PSP. Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. Journal of magnetism and magnetic materials. 2014;355:87–92. [CrossRef] [Google Scholar]
  47. Rao P, Godbole RV, Bhagwat S. Copper doped nickel ferrite nano-crystalline thin films: a potential gas sensor towards reducing gases. Materials Chemistry and Physics. 2016;171:260–6. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.