Open Access
Issue
E3S Web of Conf.
Volume 590, 2024
6th Annual International Scientific Conference on Geoinformatics - GI 2024: “Sustainable Geospatial Solutions for a Changing World”
Article Number 03004
Number of page(s) 15
Section GIS in Geodesy and Cartography
DOI https://doi.org/10.1051/e3sconf/202459003004
Published online 13 November 2024
  1. B. L. Gardner, et al., Handbook of Agricultural Economics: Agricultural Development: Farmers, Farm Production and Farm Markets. Vol. 3. (2001): Elsevier. [Google Scholar]
  2. P. E. a. S. Wing, Pakistan Economic Survey. (2023): Government of Pakistan, Finance Division, Economic Adviser's Wing. [Google Scholar]
  3. A. Azam and M. Shafique, Agriculture in Pakistan and its Impact on Economy. A Review. International Journal of Advanced Science and Technology, (2017). 103: p. 47-60. [Google Scholar]
  4. M. Azam and M. Khan, Significance of the sugarcane crops with special and ference to NWFP. Sarhad J. agric, (2010). 26(2): p. 289-295. [Google Scholar]
  5. U. Pervaiz, et al., An analysis of sugarcane production with reference to extension services in Union Council Malakandher-Peshawar. Sarhad Journal of Agriculture, (2013). 29(1): p. 145-150. [Google Scholar]
  6. K. Sumesh, S. Ninsawat, and J. Som-Ard, Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle. Computers and Electronics in Agriculture, (2021). 180: p. 105903. [CrossRef] [Google Scholar]
  7. J. Chen, et al., Sugarcane nodes identification algorithm based on sum of local pixel of minimum points of vertical projection function. Computers and Electronics in Agriculture, (2021). 182: p. 105994. [CrossRef] [Google Scholar]
  8. Y.-K. Huang, et al., Color illustration of diagnosis and control for modern sugarcane diseases, pests, and weeds. (2018): Springer. [CrossRef] [Google Scholar]
  9. R. H. Cherry, Insect management in sugarcane. (2001): University of Florida Cooperative Extension Service, Institute of Food and …. [Google Scholar]
  10. K. Braithwaite, B. Croft, and R. Magarey. Progress in identifying the cause of Ramu stunt disease of sugarcane. in Proceedings of the Australian Society of Sugar Cane Technology. (2007). [Google Scholar]
  11. B. E. Wilson, Successful integrated pest management minimizes the economic impact of Diatraea saccharalis (Lepidoptera: Crambidae) on the Louisiana sugarcane industry. Journal of Economic Entomology, (2021). 114(1): p. 468-471. [CrossRef] [PubMed] [Google Scholar]
  12. H. Huang, et al., Detection of helminthosporium leaf blotch disease based on UAV imagery. Applied Sciences, (2019). 9(3): p. 558. [CrossRef] [Google Scholar]
  13. A. Vennila, et al., Partitioning of major nutrients and nutrient use efficiency of sugarcane genotypes. Sugar Tech, (2021). 23: p. 741-746. [CrossRef] [Google Scholar]
  14. S.-S. He, et al., Economic evaluation of water-saving irrigation practices for sustainable sugarcane production in Guangxi Province, China. Sugar Tech, (2021): p. 1-7. [Google Scholar]
  15. A. K. Verma, et al., Sugarcane yield forecasting model based on weather parameters. Sugar Tech, (2021). 23: p. 158-166. [CrossRef] [Google Scholar]
  16. M. Wang, et al., Mapping sugarcane in complex landscapes by integrating multitemporal Sentinel-2 images and machine learning algorithms. Land use policy, (2019). 88: p. 104190. [CrossRef] [Google Scholar]
  17. T. F. Canata, et al., Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sensing, (2021). 13(2): p. 232. [CrossRef] [Google Scholar]
  18. H. Jiang, et al., Early season mapping of sugarcane by applying machine learning algorithms to Sentinel-1A/2 time series data: a case study in Zhanjiang City, China. Remote Sensing, (2019). 11(7): p. 861. [CrossRef] [Google Scholar]
  19. R. Singh, N. Patel, and A. Danodia, Mapping of sugarcane crop types from multi-date IRS-Resourcesat satellite data by various classification methods and field-level GPS survey. Remote Sensing Applications: Society and Environment, (2020). 19: p. 100340. [CrossRef] [Google Scholar]
  20. G. M. De Almeida, et al., Machine learning in the prediction of sugarcane production environments. Computers and Electronics in Agriculture, (2021). 190: p. 106452. [CrossRef] [Google Scholar]
  21. A. Nihar, N. Patel, and A. Danodia, Machine-Learning-Based Regional Yield Forecasting for Sugarcane Crop in Uttar Pradesh, India. Journal of the Indian Society of Remote Sensing, (2022). 50(8): p. 1519-1530. [CrossRef] [Google Scholar]
  22. A. Lonare, B. Maheshwari, and P. Chinnasamy, Village level identification of sugarcane in Sangali, Maharashtra using open source data. Journal of Agrometeorology, (2022). 24(3): p. 249-254. [CrossRef] [Google Scholar]
  23. W. Chivasa, O. Mutanga, and J. Burgueno, UAV-based high-throughput phenotyping to increase prediction and selection accuracy in maize varieties under artificial MSV inoculation. Computers and Electronics in Agriculture, (2021). 184: p. 106128. [CrossRef] [Google Scholar]
  24. M. R. Rahman, A. Islam, and M. A. Rahman, NDVI derived sugarcane area identification and crop condition assessment. Plan Plus, (2004). 1(2): p. 1-12. [Google Scholar]
  25. A. Imran, et al., Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, (2020). 6(1): p. 97-108. [Google Scholar]
  26. B. F. T. Rudorff, et al. Temporal series of EVI/MODIS to identify land converted to sugarcane. in 2009 IEEE International Geoscience and Remote Sensing Symposium. (2009). IEEE. [Google Scholar]
  27. A. C. Xavier, et al., Multi‐temporal analysis of MODIS data to classify sugarcane crop. International Journal of Remote Sensing, (2006). 27(4): p. 755-768. [CrossRef] [Google Scholar]
  28. C. C. Júnior, et al., Sugarcane mapping in Paraná State Brazil using MODIS EVI images. International Journal of Advanced Remote Sensing and GIS, (2020). 9(1): p. 3205-3221. [CrossRef] [Google Scholar]
  29. K. Chandrasekar, et al., Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. International Journal of Remote Sensing, (2010). 31(15): p. 3987-4005. [CrossRef] [Google Scholar]
  30. F. Xin, et al., Understanding the land surface phenology and gross primary production of sugarcane plantations by eddy flux measurements, MODIS images, and data-driven models. Remote Sensing, (2020). 12(14): p. 2186. [CrossRef] [Google Scholar]
  31. M. Zhu, et al. Studies on high-resolution remote sensing sugarcane field extraction based on deep learning. in IOP conference series: earth and environmental science. (2019). IOP Publishing. [Google Scholar]
  32. P. B. O. Statistics, HOUSEHOLDS, POPULATION, HOUSEHOLD SIZE AND ANNUAL GROWTH RATE, in 7th Population and Housing Census-2023 ‘The Digital Census’. (2023), Pakistan Bureau of Statistics. [Google Scholar]
  33. M. A. Khan, J. Zafar, and A. Bakhash, Energy requirement and economic analysis of sugarcane production in Dera Ismail Khan district of Pakistan. Gomal University Journal of Research, (2008). 24(1): p. 1-7. [Google Scholar]
  34. K. P. Bureau of Statistics Important District-Wise Socio-Economic Indicators of Khyber Pakhtunkhwa 2022. (2022), Bureau of Statistics , Khyber Pakhtunkhwa. [Google Scholar]
  35. T. Iffat, Desertification Dynamics and its Control Mechanisms in semi arid region of Pakistan: A case study of Karak district. (2012), Ph. D dissertation to the Institute of Geography, Urban and Regional …. [Google Scholar]
  36. A. Khaliq, et al., NOVEL HIGH CANE, SUGAR RESILIENT AND EARLY MATURING SUGARCANE VARIETY CPF 250 FOR PUNJAB PROVINCE. Life Science Journal, (2023). 20(8). [Google Scholar]
  37. P. Mafuratidze, et al., A new four-stage approach based on normalized vegetation indices for detecting and mapping sugarcane hail damage using multispectral remotely sensed data. Geocarto International, (2023). 38(1): p. 2245788. [CrossRef] [Google Scholar]
  38. C. F. Brown, et al., Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, (2022). 9(1): p. 251. [CrossRef] [Google Scholar]
  39. V. Mehmood, et al. Time series-based active labeling framework for curating a multispectral sentinel 2 imagery dataset for crop type mapping. in IGARSS 2023- 2023 IEEE International Geoscience and Remote Sensing Symposium. (2023). IEEE. [Google Scholar]
  40. M. Lakshminarasimhappa, Web-based and smart mobile app for data collection: Kobo Toolbox/Kobo collect. Journal of Indian Library Association, (2022). 57(2): p. 72-79. [Google Scholar]
  41. K. K. Poloju, et al., New method of data collection using the kobo toolbox. Journal of Positive School Psychology, (2022): p. 1527-1535. [Google Scholar]
  42. C. A. Di Vittorio and A. P. Georgakakos, Land cover classification and wetland inundation mapping using MODIS. Remote Sensing of Environment, (2018). 204: p. 1-17. [CrossRef] [Google Scholar]
  43. T. J. Jackson, et al., Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, (2004). 92(4): p. 475-482. [CrossRef] [Google Scholar]
  44. X. Zhang, et al. Analysis of time-series modis 250M vegetation index data for vegetation classifiation in the wenquan area over the qinghai-tibet plateau. in 2010 IEEE International Geoscience and Remote Sensing Symposium. (2010). IEEE. [Google Scholar]
  45. C. J. Tucker, Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, (1979). 8(2): p. 127-150. [CrossRef] [Google Scholar]
  46. A. Huete, et al., Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, (2002). 83(1-2): p. 195-213. [CrossRef] [Google Scholar]
  47. N. Davidson and C. Finlayson, Earth observation for wetland inventory, assessment and monitoring. Aquatic Conservation: Marine and Freshwater Ecosystems, (2007). 17(3): p. 219-228. [CrossRef] [Google Scholar]
  48. S. Rahman and V. Mesev, Change vector analysis, tasseled cap, and NDVI-NDMI for measuring land use/cover changes caused by a sudden short-term severe drought: 2011 Texas event. Remote sensing, (2019). 11(19): p. 2217. [CrossRef] [Google Scholar]
  49. O. Strashok, M. Ziemiańska, and V. Strashok, Evaluation and Correlation of Sentinel-2 NDVI and NDMI in Kyiv (2017–2021). Journal of Ecological Engineering, (2022). 23(9). [Google Scholar]
  50. N. Inman-Bamber and D. M. Smith, Water relations in sugarcane and response to water deficits. Field crops research, (2005). 92(2-3): p. 185-202. [CrossRef] [Google Scholar]
  51. Z. S. Venter, et al., Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sensing, (2022). 14(16): p. 4101. [CrossRef] [Google Scholar]
  52. R. G. Congalton and K. Green, Assessing the accuracy of remotely sensed data: principles and practices. (2019): CRC press. [CrossRef] [Google Scholar]
  53. M. Hassan, et al., Exploring the ratooning potential of sugarcane (Saccharum officinarum L.) genotypes under varying harvesting times of plant crop. Pakistan Journal of Agriculture Research, (2017). 30: p. 303-309. [Google Scholar]
  54. N. Farooq and S. H. Gheewala, Assessing the impact of climate change on sugarcane and adaptation actions in Pakistan. Acta Geophysica, (2020). 68: p. 1489-1503. [CrossRef] [Google Scholar]
  55. M. Pal, Random forest classifier for remote sensing classification. International journal of remote sensing, (2005). 26(1): p. 217-222. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.