Open Access
Issue |
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 9 | |
Section | Battery Management System and Power Quality | |
DOI | https://doi.org/10.1051/e3sconf/202459101002 | |
Published online | 14 November 2024 |
- Pragathi, B., and P. Ramu. “Authentication Technique for Safeguarding Privacy in Smart Grid Settings.” E3S Web of Conferences. Vol. 540. EDP Sciences, 2024. [Google Scholar]
- Pragathi, Bellamkonda, Deepak Kumar Nayak, and Ramesh Chandra Poonia. “Lorentzian adaptive filter for controlling shunt compensator to mitigate power quality problems of solar PV interconnected with grid.” International Journal of Intelligent Information and Database Systems 13.2-4 (2020): 491-506. [CrossRef] [Google Scholar]
- Pragathi, Bellamkonda, et al. “Evaluation and analysis of soft computing techniques for grid connected photo voltaic system to enhance power quality issues.” Journal of Electrical Engineering & Technology 16 (2021): 1833-1840. [CrossRef] [Google Scholar]
- D. Mhlanga, “Artificial Intelligence and Machine Learning for energy consumption and production in Emerging Markets: A review,” Energies, vol. 16, no. 2, p. 745, Jan. 2023. [CrossRef] [Google Scholar]
- M. M. Alshater, I. Kampouris, H. Marashdeh, O. F. Atayah, and H. Banna, “Early warning system to predict energy prices: the role of artificial intelligence and machine learning,” Annals of Operations Research, Aug. 2022. [Google Scholar]
- V. Manoj, “Towards Efficient Energy Solutions: MCDA-Driven Selection of Hybrid Renewable Energy Systems,” International Journal of Electrical and Electronic Engineering and Telecommunications, vol. 13, no. 2, pp. 98–111, Jan. 2024. [CrossRef] [Google Scholar]
- S. Loizidis, G. Konstantinidis, S. Theocharides, A. Kyprianou, and G. E. Georghiou, “Electricity Day-Ahead Market Conditions and their effect on the different supervised algorithms for market price forecasting,” Energies, vol. 16, no. 12, p. 4617, Jun. 2023. [CrossRef] [Google Scholar]
- S. Purohit, “Smart solutions for environmental sustainability and climate changes,” Journal of Global Resources, vol. 10, no. 1, pp. 127–131, Jan. 2024. [CrossRef] [Google Scholar]
- V. Manoj, P. Rathnala, S. R. Sura, S. N. Sai, and M. V. Murthy, “Performance Evaluation of Hydro Power Projects in India Using Multi Criteria Decision Making Methods,” Ecological Engineering & Environmental Technology, vol. 23, no. 5, pp. 205–217, Sep. 2022. [CrossRef] [Google Scholar]
- A. Jedrzejewski, J. Lago, G. Marcjasz, and R. Weron, “Electricity Price Forecasting: The Dawn of Machine Learning,” IEEE Power and Energy Magazine, vol. 20, no. 3, pp. 24–31, May 2022. [CrossRef] [Google Scholar]
- B. Zhang, C. Song, X. Jiang, and Y. Li, “Electricity price forecast based on the STL- TCN-NBEATS model,” Heliyon, vol. 9, no. 1, p. e13029, Jan. 2023. [CrossRef] [PubMed] [Google Scholar]
- V. Manoj, A. Swathi, and V. T. Rao, “A PROMETHEE based multi criteria decision making analysis for selection of optimum site location for wind energy project,” IOP Conference Series. Materials Science and Engineering, vol. 1033, no. 1, p. 012035, Jan. 2021. [CrossRef] [Google Scholar]
- S. Golia, L. Grossi, and M. Pelagatti, “Machine learning models and Intra-Daily market information for the prediction of Italian electricity prices,” Forecasting, vol. 5, no. 1, pp. 81–101, Dec. 2022. [CrossRef] [Google Scholar]
- Simi Margarat, G., Hemalatha, G., Mishra, A., Banupriya, V., Ferede, A.W., “Early Diagnosis of Tuberculosis Using Deep Learning Approach for IOT Based Healthcare Applications”, Computational Intelligence and Neuroscience, 2022, 3357508, 2022 [Google Scholar]
- Ladu, N.S.D., senthil kumar subburaj., Samikannu, R. “A Review of Renewable Energy Resources. Its Potentials, Benefits, and Challenges in South Sudan, 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation, ICAECA 2021 [Google Scholar]
- Dhabliya D.; Reddy B.; Rajarajeswari S.; Ranganathaswamy M.K.; Nivesh; Pandey M.,(2023), “The Enhanced Optimization on Deep Learning Technologies for Data Science Practices”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.- .doi:10.1109/SMARTGENCON60755.2023.10442871 [Google Scholar]
- Begum A.; Karthikeyan K.; Takale D.G.; Bhambu P.; Yadav D.; Das S.,(2023), “Exploring the Benefits of AI for Content Retrieval”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.-.doi:10.1109/SMARTGENCON60755.2023.10442622 [Google Scholar]
- Geetha; Pranali S.; Kaneria O.; Singla A.; Prasad K.V.; Das N.,(2023), “End-to-End Mobility Management in Underwater High Speed Communication Networks”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.- .doi:10.1109/SMARTGENCON60755.2023.10442813 [Google Scholar]
- A interval valued intuitionistic fuzzy multi criteria decision making, MA Ranjithkumar, J Boobalan, LG Atlas, P Sudhakar, RS Kumar, E3S Web of Conferences 376, 01114 [Google Scholar]
- Efficient Domination In Fuzzy Graphs and Intuitionistic Fuzzy Graphs in Strong and weak forms, SKRTS Rajeev Gandhi S, Prabhavathi K, VeeraSivaji R, E3S Web of Conferences, 399 (399), 4026 [Google Scholar]
- Pallathadka, H., Al-Hawary, S. I. S., Muda, I., Surahman, S. H., Al-Salami, A. A. A., & Nasimova, Z. (2023). The study of Islamic teachings in education: With an emphasis on behavioural gentleness. HTS Teologiese Studies/Theological Studies, 79(1). [CrossRef] [Google Scholar]
- Al-Ameen, Z., Sulong, G., & Johar, M. G. M. (2012c). Reducing the Gaussian blur artifact from CT medical images by employing a combination of sharpening filters and iterative deblurring algorithms. Journal of Theoretical and Applied Information Technology, 46(1), 31–36. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84874515871&partnerID=40&md5=29fb875fac71dac392b2e493512f4031 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.