Open Access
Issue |
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 12 | |
Section | Battery Management System and Power Quality | |
DOI | https://doi.org/10.1051/e3sconf/202459101004 | |
Published online | 14 November 2024 |
- Zhang, Y., et al. (2021). Blockchain-based energy management system for renewable energy microgrids: Optimizing energy distribution and transaction security. Journal of Energy Storage, 44, 103510. DOI: 10.1016/j.est.2021.103510. [Google Scholar]
- Kumar, R., & Singh, P. (2022). Decentralized energy management system using blockchain for microgrids. IEEE Transactions on Smart Grid, 13(1), 412-421. DOI: 10.1109/TSG.2022.3205987. [Google Scholar]
- Li, M., et al. (2020). Hybrid energy management system with blockchain-based security for smart grid applications. Renewable Energy, 161, 1271-1280. DOI: 10.1016/j.renene.2020.08.125. [Google Scholar]
- Wei, H., & Zhao, L. (2019). Smart contracts for blockchain-based energy trading between microgrids. Energy Reports, 5, 258-267. DOI: 10.1016/j.egyr.2019.08.016. [Google Scholar]
- Tran, T., et al. (2020). Blockchain-enabled peer-to-peer energy trading for decentralized energy systems. IEEE Access, 8, 99462-99473. DOI: 10.1109/ACCESS.2020.2999482. [Google Scholar]
- Wu, Q., & Liu, X. (2021). AI-enhanced blockchain for predictive energy management in microgrids. Applied Energy, 291, 116848. DOI: 10.1016/j.apenergy.2021.116848. [Google Scholar]
- Sharma, V., et al. (2022). IoT and blockchain-enabled energy management system for microgrids: A case study. IEEE Access, 10, 51422-51432. DOI: 10.1109/ACCESS.2022.3165649. [Google Scholar]
- Ahmed, Z., et al. (2023). Scalable blockchain architecture for energy management in large microgrid networks. Energy and AI, 7, 100146. DOI: 10.1016/j.egyai.2023.100146. [Google Scholar]
- Guo, J., et al. (2021). Distributed ledger-based energy management for secure and efficient energy trading in microgrids. Journal of Cleaner Production, 328, 129547. DOI: 10.1016/j.jclepro.2021.129547. [CrossRef] [Google Scholar]
- Zhou, Y., et al. (2023). Blockchain-powered distributed energy management for renewable microgrids: An optimization approach. IEEE Transactions on Industrial Informatics, 19(2), 1215-1226. DOI: 10.1109/TII.2023.3245867. [Google Scholar]
- Patel, S., & Liu, H. (2022). Addressing blockchain scalability in energy management systems: A lightweight approach for microgrids. Renewable and Sustainable Energy Reviews, 154, 111798. DOI: 10.1016/j.rser.2021.111798. [Google Scholar]
- Khan, A., et al. (2024). Blockchain-based EMS in smart city microgrids: A case study on energy flow optimization. Energy Reports, 10, 127-140. DOI: 10.1016/j.egyr.2024.06.015. [Google Scholar]
- Kumar, A.M., Jayakumar, K., “Drilling studies on Particle Board composite using HSS twist drill and spade drill”, Materials Today,Proceedings,5(8), pp. 16346-16351,2018 [CrossRef] [Google Scholar]
- Sujith, A.V.L.N.,Swathi, R.Venkatasubramanian, R., Muhibbullah, M.,Osman, S.M., “Integrating Nanomaterial and High-Performance Fuzzy-Based Machine Learning Approach for Green Energy Conversion”, Journal of Nanomaterials,pp- 5793978,2022 [Google Scholar]
- Katyal A.; Pandian R.; Sharma R.; Rajan T.S.; Sharma N.S.; Singh V.,(2023), “An Investigation into the Effectiveness of DNS-Based Authentication for Wireless Networks”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.-.doi:10.1109/SMARTGENCON60755.2023.10442791 [Google Scholar]
- Bhambu P.; Kumar R.; Sharmila P.; Patil V.D.; Khurana S.; Vivek V.,(2023), “Exploring Reinforcement Learning in Large-Scale Data Processing”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.-.doi:10.1109/SMARTGENCON60755.2023.10442194 [Google Scholar]
- Garg P.; Yadav R.K.; Devaraj Verma C.; Nirmala D.; Sable N.P.; Murari K.,(2023), “Estimation Analysis of Edge and Line Detection Methods in Digital Image Processing”,2023 3rd International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2023,Vol.,no.,pp.-.doi:10.1109/SMARTGENCON60755.2023.10442722 [Google Scholar]
- Mechanical Property Evaluation of Stir-Squeeze Cast Al-Based Nano SiC Composites, MI Habelalmateen, R Srinivasan, R Pant, RS Kumar, S Sheril, E3S Web of Conferences 491, 02035. [Google Scholar]
- Pragathi, B., and P. Ramu. “Authentication Technique for Safeguarding Privacy in Smart Grid Settings.” E3S Web of Conferences. Vol. 540. EDP Sciences, 2024. [Google Scholar]
- Pragathi, Bellamkonda, Deepak Kumar Nayak, and Ramesh Chandra Poonia. “Lorentzian adaptive filter for controlling shunt compensator to mitigate power quality problems of solar PV interconnected with grid.” International Journal of Intelligent Information and Database Systems 13.2-4 (2020): 491-506. [CrossRef] [Google Scholar]
- Pragathi, Bellamkonda, et al. “Evaluation and analysis of soft computing techniques for grid connected photo voltaic system to enhance power quality issues.” Journal of Electrical Engineering & Technology 16 (2021): 1833-1840. [CrossRef] [Google Scholar]
- B. Hemanth kumar and Makarand. M Lokhande, “Analysis of PWM techniques on Multilevel Cascaded H-Bridge Three Phase Inverter,” 2nd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, pp. 465-470, 26th to 27th Oct. 2017. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.