Open Access
Issue |
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 10 | |
Section | Wind Power Conversion System | |
DOI | https://doi.org/10.1051/e3sconf/202459102005 | |
Published online | 14 November 2024 |
- Saidur, R., Rahim, N. A., Islam, M. R., & Solangi, K. H. (2011). Environmental impact of wind energy. Renewable and sustainable energy reviews, 15(5), 2423-2430 [CrossRef] [Google Scholar]
- Sarathi, Y., Patel, K., Tirkey, A., Sen, P. K., & Sharma, R. (2015). Study on Wind Turbine and Its Aerodynamic Performance. International Journal of Mechanical Engineering and Robotic Research, 4(1), 249-256. [Google Scholar]
- Kumara, E. A. D., Hettiarachchi, N., & Jayathilake, R. (2017). Overview of the vertical axis wind turbines. Int. J. Sci. Res. Innov. Technol, 4, 56-67 [Google Scholar]
- Budi, E. M., Banjarnahor, D. A., &Hanifan, M. (2017, July). Study of Vertical Axis Wind Turbine for Energy Harvester in A Fishing Boat. In IOP Conference Series: Earth and Environmental Science (Vol. 75, No. 1, p. 012008). IOP Publishing [CrossRef] [Google Scholar]
- Gu, Y. (2020). Characteristics and Performance of Vertical-Axis Wind Turbine (VAWT). Global Journal of Research in Engineering. [Google Scholar]
- Howell, R., Qin, N., Edwards, J., & Durrani, N. (2010). Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable energy, 35(2), 412-422. [CrossRef] [Google Scholar]
- Alaimo, A., Esposito, A., Messineo, A., Orlando, C., & Tumino, D. (2015). 3D CFD analysis of a vertical axis wind turbine. Energies, 8(4), 3013-3033. [CrossRef] [Google Scholar]
- Vivek, C. M., Gopikrishnan, P., Murugesh, R., & Mohamed, R. R. (2017). A review on vertical and horizontal axis wind turbine. International Research Journal of Engineering and Technology (IRJET), 4(4), 247-250 [Google Scholar]
- Casini, M. (2016). Small vertical axis wind turbines for energy efficiency of buildings. Journal of Clean Energy Technologies, 4(1), 56-65. [Google Scholar]
- Ghasemian, M., Ashrafi, Z. N., & Sedaghat, A. (2017). A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management, 149, 87-100. [CrossRef] [Google Scholar]
- Rathod, P., Khatik, K., Shah, K., Desai, H., & Shah, J. (2016). A review on combined vertical axis wind turbine. International Journal of Innovative Research in Science, Engineering and Technology, 5(4), 5748-54. [Google Scholar]
- Sunil, S., Sharma, P. K., & Patil, S. (2016). A Review Paper on Vertical Axis Wind Turbine for Design and Performance Study to Generate Electricity on Highway. International Journal of Advance Engineering and Research Development, 3(Iss-12,). [Google Scholar]
- Rozehnal, D. (2017). Determination of performance parameters of vertical axis wind turbines in wind tunnel. In MATEC Web of Conferences (Vol. 107, p. 00076). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
- Hamdani, W., Sihombing, H. V., Ambarita, H., & Kishinami, K. (2020, May). Effect of Tip Speed Ratio on the Performance of H-Darrieus Wind Turbine with NACA 0018 Airfoil. In IOP Conference Series: Materials Science and Engineering (Vol. 851, No. 1, p. 012033). IOP Publishing. [CrossRef] [Google Scholar]
- Stout, C., Islam, S., White, A., Arnott, S., Kollovozi, E., Shaw, M., ... & Bird, B. (2017). Efficiency improvement of vertical axis wind turbines with an upstream deflector. Energy procedia, 118, 141-148. [CrossRef] [Google Scholar]
- Mălăel, I., Dumitrescu, H., & Cardoş, V. (2014). Numerical simulation of vertical axis wind turbine at low-speed ratios. Global Journal of Research in Engineering. [Google Scholar]
- Rogowski, K., Hansen, M. O. L., & Lichota, P. (2018). 2-D CFD Computations of the two-bladed Darrieus-type wind turbine. J. Appl. Fluid Mech, 11(4), 835-845. [CrossRef] [Google Scholar]
- Elsakka, M. M., Ingham, D. B., Ma, L., & Pourkashanian, M. (2019). CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Conversion and Management, 182, 154-165. [CrossRef] [Google Scholar]
- Nigam, P. K., Tenguria, N., & Pradhan, M. K. (2017). Analysis of horizontal axis wind turbine blade using CFD. International Journal of Engineering, Science and Technology, 9(2), 46-60. [CrossRef] [Google Scholar]
- Rezaeiha, A., Kalkman, I., & Blocken, B. (2017). CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment. Renewable energy, 107, 373-385. [CrossRef] [Google Scholar]
- Elkhoury, M., Kiwata, T., &Aoun, E. (2015). Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of wind engineering and Industrial aerodynamics, 139, 111-123 [CrossRef] [Google Scholar]
- Jakubowski, M., Starosta, R., & Fritzkowski, P. (2018, January). Kinematics of a vertical axis wind turbine with a variable pitch angle. In AIP Conference Proceedings (Vol. 1922, No. 1, p. 110012). AIP Publishing LLC. [CrossRef] [Google Scholar]
- Ragheb, M. (2014). Wind energy conversion theory, Betz equation. Wind Energie. [Google Scholar]
- Parker, C. M., & Leftwich, M. C. (2016). The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Experiments in Fluids, 57(5), 74. [CrossRef] [Google Scholar]
- El-Samanoudy, M., Ghorab, A. A. E., & Youssef, S. Z. (2010). Effect of some design parameters on the performance of a Giromill vertical axis wind turbine. Ain Shams Engineering Journal, 1(1), 85-95. [CrossRef] [Google Scholar]
- Mukhtar, M. F., Hussin, M. S. F., Tumari, M. Z. M., Ali, N. M., Damanhur, A. A. M., Hamdan, N. S., & Tofrowaih, K. A. (2020). Conceptual Design and Structure Analysis of Giromill Vertical Axis Wind Turbine under Low Wind Speed. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 75(2), 11-19. [CrossRef] [Google Scholar]
- Nongdhar, D., & Goswami, B. (2018). Design of Micro Wind Turbine for Low Wind Speed Areas: A Review. ADBU Journal of Electrical and Electronics Engineering (AJEEE), 2(1), 36-41. [Google Scholar]
- Thomas, S., Khan, M. A. R., & Chattopadhyay, A. B. (2018). Design and construction of a prototype vertical axis wind turbine (VAWT) for battery charging application. International Journal of Engineering & Technology, 7(2), 621-625. [CrossRef] [Google Scholar]
- Kumar, R., Raahemifar, K., & Fung, A. S. (2018). A critical review of vertical axis wind turbines for urban applications. Renewable and Sustainable Energy Reviews, 89, 281-291 [CrossRef] [Google Scholar]
- Shukla, S., Sharma, P. K., & Suryabhan, P. (2016). A Review Paper on Vertical Axis Wind Turbine for Design and Performance Study to Generate Electricity on Highway. International Journal of Advance Engineering and Research Development, 3(12). [Google Scholar]
- Kouloumpis, V., Sobolewski, R. A., & Yan, X. (2020). Performance and life cycle assessment of a small-scale vertical axis wind turbine. Journal of Cleaner Production, 247, 119520. [CrossRef] [Google Scholar]
- Hand, B., Kelly, G., & Cashman, A. (2021). Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renewable and Sustainable Energy Reviews, 139, 110699. [CrossRef] [Google Scholar]
- Su, J., Chen, Y., Han, Z., Zhou, D., Bao, Y., & Zhao, Y. (2020). Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines. Applied Energy, 260, 114326. [CrossRef] [Google Scholar]
- Mazarbhuiya, H. M. S. M., Biswas, A., & Sharma, K. K. (2020). Blade thickness effect on the aerodynamic performance of an asymmetric NACA six series blade vertical axis wind turbine in low wind speed. International Journal of Green Energy, 17(2), 171-179. [CrossRef] [Google Scholar]
- Atlaschian, O., & Metzger, M. (2021). Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions. Renewable Energy, 165, 211-223. [CrossRef] [Google Scholar]
- Guo, J., & Lei, L. (2020). Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes. Energies, 13(23), 6281. [CrossRef] [Google Scholar]
- Rezaeiha, A., Montazeri, H., &Blocken, B. (2020, September). CFD Investigation of Separation Control on a Vertical Axis Wind Turbine: Steady and Unsteady Suction. In Journal of Physics: Conference Series (Vol. 1618, No. 5, p. 052019). IOP Publishing. [CrossRef] [Google Scholar]
- Wu, Z., Wang, Q., Bangga, G., & Huang, H. (2020). Responses of vertical axis wind turbines to gusty winds. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0957650920910595. [Google Scholar]
- Vergaerde, A., De Troyer, T., Standaert, L., Kluczewska-Bordier, J., Pitance, D., Immas, A., ... & Runacres, M. C. (2020). Experimental validation of the power enhancement of a pair of vertical-axis wind turbines. Renewable Energy, 146, 181-187. [CrossRef] [Google Scholar]
- Shukla, D. L., Mehta, A. U., & Modi, K. V. (2020). Dynamic overset 2D CFD numerical simulation of a small vertical axis wind turbine. International Journal of Ambient Energy, 41(12), 1415-1422. [CrossRef] [Google Scholar]
- Naseem, A., Uddin, E., Ali, Z., Aslam, J., Shah, S. R., Sajid, M., ... & Younis, M. Y. (2020). Effect of vortices on power output of vertical axis wind turbine (VAWT). Sustainable Energy Technologies and Assessments, 37, 100586. [CrossRef] [Google Scholar]
- Rezaeiha, A., Montazeri, H., & Blocken, B. (2018). Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion and Management, 156, 301-316. [CrossRef] [Google Scholar]
- Bhatt, Ankit, Weerakorn Ongsakul, and Jayant Pawar, “Optimal energy management system for carbon–neutral microgrid integrating second-life batteries and crypto mining devices.” Sustainable Energy Technologies and Assessments 64 (2024): 103686. [CrossRef] [Google Scholar]
- Obalalu, A. M., Salawu, S. O., Olayemi, O. A., Ajala, O. A., & Issa, K. (2023). Analysis of hydromagnetic Williamson fluid flow over an inclined stretching sheet with Hall current using Galerkin Weighted Residual Method. Computers & Mathematics with Applications, 146, 22-32. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.