Open Access
Issue
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
Article Number 05007
Number of page(s) 9
Section Grid Connected Power Generation Systems with RER
DOI https://doi.org/10.1051/e3sconf/202459105007
Published online 14 November 2024
  1. K. Guedri, A. Abbasi, K. A-Khaled, W. Farooq, S. Ullah, M.I. Khan, A. M. Galal, Thermal transport of biological base fluid with copper and iron oxide nanoparticles in wavy channel. J. Appl. Biom. and Func Mater. (2022). [Google Scholar]
  2. K. Guedri, Adnan, Z. Raizah, E.T. Eldin, M.A. El- Shorbagy, W. Abbas, U. Khan, Thermal mechanism in magneto-radiated Al2O3 –Fe3O4/blood]hnf over a 3D surface: Applications in Biomedical Engineering. Front. in Chem. 10:9603449 (2022). doi:doi:10.3389/fchem.2022.960349 [CrossRef] [Google Scholar]
  3. M.D. Alsulami, A. Abdulrahman, R.N. Kumar, R.J.P. Gowda, B.C. Prasannakumara, Three-dimensional swiling flow of nanofluid with nanoparticle aggregation kinematics using modified Krieger-Dougherty and Maxwell-Bruggeman Models: A Finite Element solution. Math. 11, 2081 (2023). [CrossRef] [Google Scholar]
  4. P. Sunthrayuth, S.A.M. Abdelmohsen, M.B. Rekha, K.R. Raghunatha, A.M.M. Abdelbacki, M.R. Gorji, B.C. Prasannakumara, Impact of nanoparticles aggregate on heat transfer phenomena of second grade nanofluid flow over melting surface subject to homogenous-heterogenous reactions. Case study of Ther. Eng. 32 101897 (2022). [CrossRef] [Google Scholar]
  5. Bhatt, Ankit, Weerakorn Ongsakul, and Jayant Pawar, “Optimal energy management system for carbon–neutral microgrid integrating second-life batteries and crypto mining devices.” Sustainable Energy Technologies and Assessments 64 (2024): 103686. [CrossRef] [Google Scholar]
  6. A.M. Obalalu, S.O. Salawu, M.A. Memon, O.A. Olayemi, M.R. Ali, R. Sadat, C.B. Odetunde, O.A. Ajala, A.O. Akindele, Computational study of Cattaneo–Christov heat flux on cylindrical surfaces using CNT hybrid nanofluids: A solar-powered ship implementation. Case Study in Ther. Eng. 1;45:102959 (2023). [CrossRef] [Google Scholar]
  7. M.A. Qureshi, A case study of MHD driven Prandtl- Eyring hybrid nanofluid flow over a stretching sheet with thermal jump conditions. Case Study in Ther. Eng. 28101581 (2021). [Google Scholar]
  8. P. Hassanpour, Y. Panahi, A. Ebrahimi‐Kalan, A. Akbarzadeh, S. Davaran, A.N. Nasibova, R. Khalilov, T. Kavetskyy, Biomedical applications of aluminium oxide nanoparticles. Micro & Nano Letters. 13(9):1227-31 (2018). [CrossRef] [Google Scholar]
  9. B.K. Sharma, Poonam, A.J. Chamkha, Effects of heat transfer, body acceleration and hybrid nanoparticles (Au–Al2O3) on MHD blood flow through a curved artery with stenosis and aneurysm using hematocrit-dependent viscosity. Waves in Rand. and Comp. Med. 24:1-31 (2022). [Google Scholar]
  10. Y. Wang, A. Raza, S.U. Khan, M. Khan, M, Ayadi, M.A. El-Shorbagy, N.A. Alshehri, F. Wang, M.Y. Malik, Prabhakar fractional simulations for hybrid nanofluid with aluminum oxide, titanium oxide and copper nanoparticles along with blood base fluid. Waves in Rand. and Comp. Med. 23:1-20 (2022). [Google Scholar]
  11. A. Ahmed, S. Nadeem, The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. Journ. of Mol. Liqs. 1;216:615-23 (2016). [CrossRef] [Google Scholar]
  12. B.K. Sharma, C. Kumawat, K. Vafai, Computational biomedical simulations of hybrid nanoparticles (Au- Al2O3/blood-mediated) transport in a stenosed and aneurysmal curved artery with heat and mass transfer: Hematocrit dependent viscosity approach. Chem. Phy. Lett. 1;800:139666 (2022). [CrossRef] [Google Scholar]
  13. T. Maranna, S.M. Sachhin, U.S. Mahabaleshwar, M. Hatami, Impact of Navier’s slip and MHD on laminar boundary layer flow with heat transfer for non-Newtonian nanofluid over a porous media. Sci. Rep. 3;13(1):12634 (2023). [CrossRef] [Google Scholar]
  14. M. Hassan, A. Faisal, M.M. Bhatti, Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge. Appl. Nanosci.. 8:53-60 (2018). [CrossRef] [Google Scholar]
  15. O.A. Wale, A.A. Oladimeji, Mixture of Al2O3- Cu/H2O-(CH2OH)2 MHD hybrid nanofluid flow due to a stretchable rotating disks system under the influence of non-uniform heat source or sink and thermal radiation. J. Math. Comput. Sci. 22;12: (2021). [Google Scholar]
  16. J.K. Madhukesh, R.N. Kumar, U. Khan, R. Gill, Z. Raizah, S. Elattar, S.M. Eldin, S.H. Shah, B. Rajappa, A.M. Abed, Analysis of buoyancy assisting and opposing flows of colloidal mixture of titanium oxide, silver, and aluminium oxide nanoparticles with water due to exponentially stretchable surface. Arab. Journ. of Chm. 1;16(4):104550 (2023). [Google Scholar]
  17. S. Manjunatha, V. Puneeth, A.K. Baby, C.S. Vishalakshi, Examination of thermal and velocity slip effects on the flow of blood suspended with aluminum alloys over a bi-directional stretching sheet: the ternary nanofluid model. Waves in Rand. and Comp. Med. 2:1-8 (2022). [Google Scholar]
  18. M.N. Khan, M.A. Hussien, N.A. Ahammad, H.A. Ghazwani, M.A. El-Shorbagy, Insight into the motion of ethylene glycol (fluid) conveying magnesium oxide and aluminium oxide nanoparticles with emphasis on “upper branch” and “lower branch” solutions. Alex. Eng. Journ. 15;79:366-73 (2023). [CrossRef] [Google Scholar]
  19. O.A. Oladapo, O.A. Ajala, A.O. Akindele, L.O. Aselebe, A.M. Obalalu, A.D. Ohaegbue, P. Adegbite, Analysis of Variable Properties on Ternary and Tetra Hybrid Nanofluids Using Blasius Rayleigh-Stokes Time Dependent Variable: A Model for Solar Aeronautical Engineering. Int. Journ. of Therm. 25:100775 (2024). [Google Scholar]
  20. G. Vinayagam, V.K. Golla, Flow transport phenomena of a hybrid nanofluid suspended by magnetic iron oxide and molybdenum disulfide nanoparticles in blood plasma. Biointer. Res. in Appl. Chem. 13(5):1-4 (2023). [Google Scholar]
  21. N.F. Attia, E.M. Abd El-Monaem, H.G. El-Aqapa, S.E. Elashery, A.S. Eltaweil, M. El-Kady, S.A. Khalifa, H.B. Hawash, H.R. El-Seedi, Iron oxide nanoparticles and their pharmaceutical applications. App. Surf. Sci. Adv. 1;11:100284 (2022). [CrossRef] [Google Scholar]
  22. U.S. Ezealigo, B.N. Ezealigo, S.O. Aisida, F.I. Ezema, Iron oxide nanoparticles in biological systems: antibacterial and toxicology perspective. JCIS Open 4: 100027. [Google Scholar]
  23. P. Jayavel, M. Ramzan, S. Saleem, A. Verma, K. Ramesh, Homotopy analysis on the bio-inspired radiative magnesium and iron oxides/blood nanofluid flow over an exponential stretching sheet. Comp. Par. Mech. 10(6):1955-75 (2023). [CrossRef] [Google Scholar]
  24. H. Kaneez, A. Baqar, I. Andleeb, M.B. Hafeez, M. Krawczuk, W. Jamshed, M.R. Eid, A. Abd- Elmonem, Thermal analysis of magnetohydrodynamics (MHD) Casson fluid with suspended iron (II, III) oxide-aluminum oxide- titanium dioxide ternary-hybrid nanostructures. Journ. of Mag. and Mag. Mat. 15;586:171223 (2023). [CrossRef] [Google Scholar]
  25. T. Oreyeni, A.O. Akindele, A.M Obalalu, S.O. Salawu, K. Ramesh, Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo–Christov heat flux model: Solar-powered ship application. Numerical Heat Transfer, Part A: Appl. 17;85(12):1954-72 (2024). [CrossRef] [Google Scholar]
  26. L.B. Thomsen, T. Linemann, K.M. Pondman, J. Lichota, K.S. Kim, R.J. Pieters, G.M. Visser, T. Moos, Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS chem. neurosci. 16;4(10):1352-60 (2013). [CrossRef] [Google Scholar]
  27. A.M. Obalalu, O.A. Olayemi, S.A. Salaudeen, A.D. Adeshola, O.B. Ojewola, A.O. Akindele, O.A. Oladapo, Hydrothermal Characteristics-Based Water Purification Model Using Hybrid Nanofluid Flow over Non-Linearly Stretched Permeable Surfaces. Nano Hyb. and Comp. 1;44:53-69 (2024). [Google Scholar]
  28. M. Devaraji, P.V. Thanikachalam, K. Elumalai, The Potential of Copper Oxide Nanoparticles in Nanomedicine: A Comprehensive Review. Biotech. Notes. 5 (2024). [Google Scholar]
  29. N. Rabiee, M. Bagherzadeh, M. Kiani, A.M. Ghadiri, F. Etessamifar, A.H. Jaberizadeh, A. Shakeri, Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. Journ. of Nanomed. 9:3983-99 (2020). [CrossRef] [Google Scholar]
  30. S. Dinarvand, N.M. Rostami, R. Dinarvand, I. Pop, Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet. Int. Journ. of Num. Meth. for Heat & Fluid Flow. 17;29(11):4408-29 (2019). [CrossRef] [Google Scholar]
  31. D. Tripathi, J. Prakash, A.K. Tiwari, R. Ellahi, Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu-CuO/blood flow in microvascular vessels. Micro Res. 1;132:104065 (2020). [CrossRef] [Google Scholar]
  32. G. Venkatesan, A.S. Reddy, Joule heating impacts on MHD pulsating flow of Au/CuO‐blood Oldroyd‐ B nanofluid in a porous channel. Heat Trans. 50(7):7495-513 (2021). [CrossRef] [Google Scholar]
  33. A.O. Akindele, A.M. Obalalu, A.S. Bhakuni, M. Bajaj, O.A. Oladapo, A.M. Abdul-Yekeen, A Case Study On Solar Automobiles Considering a Time Dependent Variable On Casson Tetra Hybrid Nanofluids Flow Under the Influence of a Magnetic Field and Thermal Radiation. InE3S Web of Conf. (Vol. 564, p. 06003). EDP Sciences (2024). [CrossRef] [EDP Sciences] [Google Scholar]
  34. C. Janko, S. Dürr, L.E. Munoz, S. Lyer, R. Chaurio, R. Tietze, S. von-Löhneysen, C. Schorn, M. Herrmann, C. Alexiou, Magnetic drug targeting reduces the chemotherapeutic burden on circulating leukocytes. Int. Journ. of Mole. Sci. 2;14(4):7341-55 (2013). [CrossRef] [Google Scholar]
  35. K. Guedri, Adnan, Z. Raizah, E.T. Eldin, M.A. El- Shorbagy, W. Abbas, U. Khan, Thermal mechanism in magneto radiated [(Al2O3 –Fe3O4)/blood] hnf over a 3D surface: applications in biomedical engineering. Fron. in Chem.. 6;10:960349. (2022). [CrossRef] [Google Scholar]
  36. P. Sunthrayuth, S.A.M. Abdelmohsen, M.B. Rekha, K.R. Raghunatha, A.M.M. Abdelbacki, M.R. Gorji, B.C. Prasannakumara, Impact of nanoparticles aggregate on heat transfer phenomena of second grade nanofluid flow over melting surface subject to homogenous-heterogenous reactions. Case study of Ther. Eng. 32; 101897 (2022). [CrossRef] [Google Scholar]
  37. C.Y. Wang, Free convection on a vertical stretching surface, ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 69 (11) 418–420 (1989). [CrossRef] [Google Scholar]
  38. R.S. Reddy Gorla, I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Appl. Sci. Res. 52 (3) 247–257 (1994). [Google Scholar]
  39. B. Mahanthesh, K. Thriveni, P. Rana, T. Muhammad, Radiative heat transfer of nanomaterial on a convectively heated circular tube with activation energy and nanoparticle aggregation kinematic effects, Int. Commun. Heat Mass Tran. 127 105568 (2021). [CrossRef] [Google Scholar]
  40. Salawu, S. O., Obalalu, A. M., Fatunmbi, E. O., & Oderinu, R. A. (2022). Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation. Journal of Molecular Liquids, 361, 119608. [CrossRef] [Google Scholar]
  41. Olayemi, O. A., Obalalu, A. M., Odetunde, C. B., & Ajala, O. A. (2022). Heat transfer enhancement of magnetized nanofluid flow due to a stretchable rotating disk with variable thermophysical properties effects. The European Physical Journal Plus, 137(3), 393. [CrossRef] [Google Scholar]
  42. Olayemi, O. A., Al‐Farhany, K., Obalalu, A. M., Ajide, T. F., & Adebayo, K. R. (2022). Magnetoconvection around an elliptic cylinder placed in a lid‐driven square enclosure subjected to internal heat generation or absorption. Heat Transfer, 51(6), 4950-4976. [CrossRef] [Google Scholar]
  43. Obalalu, A. M., Alfwzan, W. F., Memon, M. A., Darvesh, A., Adegbite, P., Hendy, A. S., & Ali, M. R. (2024). Energy optimization of quadratic thermal convection on two-phase boundary layer flow across a moving vertical flat plate. Case Studies in Thermal Engineering, 55, 104073. [CrossRef] [Google Scholar]
  44. Nimmy, P., Obalalu, A. M., Nagaraja, K. V., Madhukesh, J. K., Khan, U., Ishak, A., ... & Abdou, M. M. M. (2024). Thermal scrutinization of time- dependent flow of nanoparticles over a rotating sphere with autocatalytic chemical reaction. The European Physical Journal Plus, 139(3), 1-15. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.