Open Access
Issue
E3S Web Conf.
Volume 591, 2024
International Conference on Renewable Energy Resources and Applications (ICRERA-2024)
Article Number 09010
Number of page(s) 12
Section Material Engineering
DOI https://doi.org/10.1051/e3sconf/202459109010
Published online 14 November 2024
  1. A. Afroz, R. Zia, A. O. Garcia, M. U. Khan, U. Jilani, and K. M. Ahmed, “Skin lesion classification using machine learning approach: A survey,” in Proc. Global Conf. Wireless Opt. Technol. (GCWOT), Feb. 2022, pp. 1–8. [Google Scholar]
  2. Z. Waheed, A. Waheed, M. Zafar, and F. Riaz, “An efficient machine learning approach for the detection of melanoma using dermoscopic images,” in Proc. Int. Conf. Commun., Comput. Digit. Syst. (C-CODE), Mar. 2017, pp. 316–319. [Google Scholar]
  3. R. Seeja and A. Suresh, “Deep learning based skin lesion segmentation and classification of melanoma using support vector machine (SVM), “ Asian Pacific J. Cancer Prevention, vol. 20, no. 5, p. 1555, Feb. 2019. [Google Scholar]
  4. U.-O. Dorj, K.-K. Lee, J.-Y. Choi, and M. Lee, “The skin cancer classification using deep convolutional neural network,” Multimedia Tools Appl., vol. 77, no. 8, pp. 9909–9924, Apr. 2018. [CrossRef] [Google Scholar]
  5. B. Harangi, “Skin lesion classification with ensembles of deep convolutional neural networks,” J. Biomed. Inform., vol. 86, pp. 25–32, Oct. 2018. [CrossRef] [Google Scholar]
  6. A. Aboulmira, E. M. Raouhi, H. Hrimech, and M. Lachgar, “Ensemble learning methods for deep learning: Application to skin lesions classification,” in Proc. 11th Int. Symp. Signal, Image, Video Commun. (ISIVC), May 2022, pp. 1_6. [Google Scholar]
  7. S. M. Alizadeh and A. Mahloojifar, “Automatic skin cancer detection in dermoscopy images by combining convolutional neural networks and texture features,” Int. J. Imag. Syst. Technol., vol. 31, no. 2, pp. 695_707, Jun. 2021. [CrossRef] [Google Scholar]
  8. S. Jiang, H. Li, and Z. Jin, “A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis,” IEEE J. Biomed. Health Informat., vol. 25, no. 5, pp. 1483_1494, May 2021. [CrossRef] [PubMed] [Google Scholar]
  9. R. Zhang, “Melanoma detection using convolutional neural network,” in Proc. IEEE Int. Conf. Consum. Electron. Comput. Eng. (ICCECE), Jan. 2021, pp. 75_78. [Google Scholar]
  10. R. L. Araujo, R. D. A. L. Rabelo, J. J. P. C. Rodrigues, and R. R. V. E. Silva, “Automatic segmentation of melanoma skin cancer using deep learning,” in Proc. IEEE Int. Conf. e-Health Netw., Appl. Services (HEALTHCOM), Mar. 2021, pp. 1_6. [Google Scholar]
  11. R. R. Subramanian, D. Achuth, P. S. Kumar, K. N. K. Reddy, S. Amara, and A. S. Chowdary, “Skin cancer classi_cation using convolutional neural networks,” in Proc. 11th Int. Conf. Cloud Comput., Data Sci. Eng. (Conference), Jan. 2021, pp. 13_19. [Google Scholar]
  12. A. G. C. Pacheco and R. A. Krohling, “An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification,” IEEE J. Biomed. Health Informat., vol. 25, no. 9, pp. 3554_3563, Sep. 2021. [CrossRef] [PubMed] [Google Scholar]
  13. Y. Jusman, I. M. Firdiantika, D. A. Dharmawan, and K. Purwanto, “Performance of multi layer perceptron and deep neural networks in skin cancer classification,” in Proc. IEEE 3rd Global Conf. Life Sci. Technol. (LifeTech), Mar. 2021, pp. 534_538. [Google Scholar]
  14. M. To§açar, Z. Cömert, and B. Ergen, “Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks,” Chaos, Solitons Fractals, vol. 144, Mar. 2021, Art. no. 110714. [Google Scholar]
  15. Harish, P., and S. Baskar. “Safe Engineering Methods for Detecting Brain Tumor Using Heat Distribution Merged Saliency Detection.” Journal of Green Engineering 10 (2020): 7946-7961. [Google Scholar]
  16. Harish, P., and S. Baskar. “Safe Engineering Applications for Diagnosis of Brain Abnormalities using Adaptive Local Binary Pattern Based Texture Analysis.” Journal of Green Engineering 10 (2020): 4727-4743. [Google Scholar]
  17. Pragathi, B., and P. Ramu. “Authentication Technique for Safeguarding Privacy in Smart Grid Settings.” E3S Web of Conferences. Vol. 540. EDP Sciences, 2024. [Google Scholar]
  18. Pragathi, Bellamkonda, Deepak Kumar Nayak, and Ramesh Chandra Poonia. “Lorentzian adaptive filter for controlling shunt compensator to mitigate power quality problems of solar PV interconnected with grid.” International Journal of Intelligent Information and Database Systems 13.2-4 (2020): 491-506. [CrossRef] [Google Scholar]
  19. Pragathi, Bellamkonda, et al. “Evaluation and analysis of soft computing techniques for grid connected photo voltaic system to enhance power quality issues.” Journal of Electrical Engineering & Technology 16 (2021): 1833-1840. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.