Open Access
Issue
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
Article Number 02014
Number of page(s) 7
Section Thermophysics and Physical Hydrodynamics
DOI https://doi.org/10.1051/e3sconf/202459202014
Published online 20 November 2024
  1. T. Tan et al., 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. Advanced Science. 7, 2000058, (2020). https://doi.org/10.1002/advs.202000058 [CrossRef] [Google Scholar]
  2. K. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics. 10, 216–226, (2016). https://doi.org/10.1038/nphoton.2015.282 [CrossRef] [Google Scholar]
  3. B. Deng, Z. Liu, H. Peng, B. Deng, Z. Liu, and H. Peng, Toward Mass Production of CVD Graphene Films. Advanced Materials. 31, 1800996, (2019). https://doi.org/10.1002/adma.201800996 [CrossRef] [Google Scholar]
  4. A. Pospischil et al., CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics. 7, 892–896, (2013). https://doi.org/10.1038/nphoton.2013.240 [CrossRef] [Google Scholar]
  5. G. Konstantatos et al., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 7, 363–368, (2012). https://doi.org/10.1038/nnano.2012.60 [CrossRef] [PubMed] [Google Scholar]
  6. Q. Wang et al., High-Performance Phototransistor of Epitaxial PbS Nanoplate-Graphene Heterostructure with Edge Contact. Advanced Materials. 28, 6497–6503, (2016). https://doi.org/10.1002/adma.201601071 [CrossRef] [PubMed] [Google Scholar]
  7. A. Suriani et al., Titanium dioxide/agglomerated-free reduced graphene oxide hybrid photoanode film for dye-sensitized solar cells photovoltaic performance improvement. Nano-Structures & Nano-Objects. 18, 100314, (2019). https://doi.org/10.1016/j.nanoso.2019.100314 [CrossRef] [Google Scholar]
  8. Y. Liang, B. Vijayan, K. Gray, and M. Hersam, Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 11, 2865–2870, (2011). https://doi.org/10.1021/nl2012906 [CrossRef] [PubMed] [Google Scholar]
  9. J. Guo et al., Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst. Ultrasonics Sonochemistry. 18, 1082–1090, (2011). https://doi.org/10.1016/j.ultsonch.2011.03.021 [CrossRef] [Google Scholar]
  10. V. Andryushchenko, D. Sorokin, M. Morozova, O. Solnyshkina, and D. Smovzh, Graphene-polymer composite conductivity in air and water. Appl. Surf. Sci. 567, 150843, (2021). https://doi.org/10.1016Zj.apsusc.2021.150843 [CrossRef] [Google Scholar]
  11. L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87, (2009). https://doi.org/10.1016/j.physrep.2009.02.003 [CrossRef] [Google Scholar]
  12. X. Wang and X. Gan, Graphene integrated photodetectors and opto-electronic devices — a review. Chinese Physics B. 26, 034203, (2017). https://doi.org/10.1088/1674-1056/26/3/034203 [CrossRef] [Google Scholar]
  13. J. Yang, Y. Hu, C. Jin, L. Zhuge, and X. Wu, Preparation of TiO2/single layer graphene composite films via a novel interface-facilitated route. Appl. Surf. Sci. 503, 144334, (2020). https://doi.org/10.1016/j.apsusc.2019.144334 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.