Open Access
Issue
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
Article Number 05006
Number of page(s) 8
Section Mining, Geology, Geodesy, and Environmental Monitoring
DOI https://doi.org/10.1051/e3sconf/202459205006
Published online 20 November 2024
  1. C. Dong, C. C. Loy, K. He, X. Tang, Image super-resolution using deep convolutional networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307 (2016) [CrossRef] [PubMed] [Google Scholar]
  2. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv: 1511.06434, Available: https://arxiv.org/pdf/1511.06434v1.pdf (2015. [Google Scholar]
  3. C. Ledig et al., Photo-realistic single image super-resolution using a generative adversarial network, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 105–114 (2017) [CrossRef] [Google Scholar]
  4. X. Wang et al., ESRGAN: enhanced super-resolution generative adversarial networks, LNCS 11133 63–79 (2019) [Google Scholar]
  5. N. C. Rakotonirina, A. Rasoanaivo, ESRGAN+ : further improving enhanced super-resolution generative adversarial network, in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3637–3641 (2020) [CrossRef] [Google Scholar]
  6. C.-W. Jing, Z.-X. Huang, Z.-Y. Ling, An image super-resolution reconstruction method based on PEGAN, IEEE Access 11, 102550–102561, (2022) [Google Scholar]
  7. L. Gao, D. Hong, J. Yao, B. Zhang, P. Gamba, J. Chanussot, Spectral superresolution of multispectral imagery with joint sparse and low-rank learning, IEEE Trans. Geosci. Remote Sens. 59(3), 2269–2280 (2021) [CrossRef] [Google Scholar]
  8. N. Darapaneni et al., Contextual attention mechanism, SRGAN based inpainting system for eliminating interruptions from images, c2204.02591 Available: https://arxiv.org/pdf/2204.02591.pdf (2022. [Google Scholar]
  9. USGS EROS archive - aerial photography - high resolution orthoimagery (HRO), doi: 10.5066/F73X84W6 (2018) [Google Scholar]
  10. USGS EROS Archive - AVHRR normalized difference vegetation index (ndvi) composites, doi: 10.5066/F7707ZKN. (2018) [Google Scholar]
  11. Landsat collection 2 level-3 dynamic surface water extent (DSWE) contains six acquisition-based raster data products pertaining to the existence and condition of surface water, doi: 10.5066/P9DPWBUS (2022) [Google Scholar]
  12. USGS EROS archive - heat capacity mapping mission (HCMM), doi: 10.5066/P906HJ0V (2018) [Google Scholar]
  13. USGS EROS archive - digital elevation - global multi-resolution terrain elevation data 2010 (GMTED2010), doi: doi.org/10.5066/F7J38R2N (2018). [Google Scholar]
  14. I. J. Goodfellow et al., Generative adversarial nets. arXiv preprint arXiv: 1406.2661 Available: https://arxiv.org/pdf/1406.2661.pdf (2014. [Google Scholar]
  15. D. Kingma, J. Ba, Adam: a method for stochastic optimization, International Conference on Learning Representations, arXiv preprint arXiv: 1412.6980, Available: https://arxiv.org/pdf/1412.6980 (2014. [Google Scholar]
  16. Y. Tai, J. Yang, X. Liu, Image super-resolution via deep recursive residual network, In Proceedings of the IEEE conference on computer vision and pattern recognition, 3147–3155 (2017) [Google Scholar]
  17. B. Liu, J. Chen, A super resolution algorithm based on attention mechanism and SRGAN network, IEEE Access 9, 139138–139145 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.