Open Access
Issue |
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
|
|
---|---|---|
Article Number | 06008 | |
Number of page(s) | 9 | |
Section | Natural Resource Management, Air Pollution, and Water Treatment | |
DOI | https://doi.org/10.1051/e3sconf/202459206008 | |
Published online | 20 November 2024 |
- http://www.kremlin.ru/events/president/news/73986 [Google Scholar]
- C. Liu, Z. Yao, K. Wang, X. Zheng, B. Li. Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Sci Total Environ. 647: P.895–904. (2019). https://doi.org/10.1016/j.scitotenv.2018.08.048. [CrossRef] [Google Scholar]
- IPCC. Climate change 2014: impacts, adaptation, and vulnerability. 2014. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D pp. 688. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Ipcc 2014: 688. [Google Scholar]
- B. Dutcher, M. Fan, A.G. Russell. Amine-based CO2 capture technology development from the beginning of 2013-A review. ACS Appl Mater Interfaces; 7: P.2137–2148. (2015) https://doi.org/10.1021/am507465f. [CrossRef] [PubMed] [Google Scholar]
- IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp. [Google Scholar]
- F.O. Ochedi, J. Yu, H. Yu, Y. Liu, A. Hussain. Carbon dioxide capture using liquid absorption methods: a review. Environmental Chemistry Letters, 19(1). P.77–109. (2020). doi: 10.1007/s10311-020-01093-8. [Google Scholar]
- P.D. Dissanayake, S. You, A.D. Igalavithana, Y. Xia, A. Bhatnagar, S. Gupta, H.W. Kua, K. Sumin, J.H. Kwon, D.C.W. Tsang, Y.S. Ok. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 109582. (2019). doi: 10.1016/j.rser.2019.109582. [Google Scholar]
- C.Y. Chen, K.L. Yeh, R. Aisyah, D.-J. Lee, J.-S. Chang. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1). P.71–81. (2011). doi: 10.1016/j.biortech.2010.06.159. [CrossRef] [PubMed] [Google Scholar]
- A. Aslam, S. R. Thomas-Hall, T.A. Mughal, P.M. Schenk. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresource Technology, 233. P. 271–283. (2017). doi: 10.1016/j.biortech.2017.02.111. [CrossRef] [PubMed] [Google Scholar]
- N.R. Moheimani. Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. Journal of Applied Phycology, 28(4). P.2139–2146. (2015). doi: 10.1007/s10811-015-0782-3. [Google Scholar]
- C. Yoo, S.Y. Jun, J.-Y. Lee, C.Y. Ahn, H.-M. Oh. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101(1). P.71–74. (2010). doi: 10.1016/j.biortech.2009.03.030. [Google Scholar]
- J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou, K. Cen. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresource Technology, 144. P.321–327. (2013). doi: 10.1016/j.biortech.2013.06.122. [CrossRef] [PubMed] [Google Scholar]
- D. Sorigué. An algal photoenzyme converts fatty acids to hydrocarbons, Science (2017). DOI: 10.1126/science.aan6349. [Google Scholar]
- https://nauchkor.ru/uploads/documents/5ee4ab02cd3d3e0001008588.pdf?vsdid=m2nfsf4ec687169083 [Google Scholar]
- R.S. Hanson, T.E. Hanson. Methanotrophic bacteria. Microbiol Rev. Jun. 60(2). P. 439–71. (1996). [CrossRef] [PubMed] [Google Scholar]
- R. Ponnudurai, M. Kleiner, L. Sayavedra. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis. Microbial ecology. 11. P. 463–477. (2016). [Google Scholar]
- F.B. Shevlyakov, O.R. Latypov, A.B. Laptev, D.R. Latypova. Decarbonization of gas emissions from petrochemical production using microalgae. Global J. Environ. Sci. Manage., 10(2). P.733–742. (2024). DOI: 10.22035/gjesm.2024.02.19. [Google Scholar]
- P. Coutinho, P. Rema, A. Otero, O. Pereira, J. Fabregas. Use of biomass of the marine microalga Isochrysis galbana in the nutrition of goldfish (carassius auratus) larvae as source of protein and vitamins. Aquacult. Res. 37(8). P.793–798. (2006). [CrossRef] [Google Scholar]
- S. Bhatti, E. Huertas, B. Colman. Acquisition of inorganic carbon by the marine haptophyte Isochrysis galbana (Prymnesiophyceae). Plant Physiol. Biochem., 38. P.914–921. (2002). [Google Scholar]
- A. Bajguz, S. Hayat. Effects of brassinosteroids on plant responses to environmental stresses. Plant Physiol. Biochem., 47(1). P. 1–8. (2009). [CrossRef] [Google Scholar]
- J. Masojidek and G. Torzillo. Mass cultivation of freshwater microalgae. Reference module in earth systems and environmental sciences. Elsevier Inc., P. 2226–2235. (2014). [Google Scholar]
- S.P. Singh, P. Singh. Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews. 50. P. 431–444. (2015). doi: 10.1016/j.rser.2015.05.024. [CrossRef] [Google Scholar]
- B. Barati, P.-E. Lim, S.-Y. Gan, S.-W. Poong, S.-M. Phang, J. Beardall. Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. J. of Appl. Phyc., 30(1). P. 1–13. (2017). doi: 10.1007/s10811-017-1198-z. [Google Scholar]
- F. Lucile, P. Cezac, F. Contamine, J.-P. Serin, D. Houssin, P. Arpentinier. Solubility of Carbon Dioxide in Water and Aqueous Solution Containing Sodium Hydroxide at Temperatures from (293.15 to 393.15) K and Pressure up to 5 MPa: Experimental Measurements. J. of Chem. Eng. Data. 57(3). P.784–789. (2012). doi: 10.1021/je200991x. [CrossRef] [Google Scholar]
- S.C. Fitzer, J. Plancq, C.J. Floyd, F.M. Kemp, J.L. Toney. Increased pCO2 changes the lipid production in important aquacultural feedstock algae Isochrysis galbana, but not in Tetraselmis suecica. Aquaculture and Fisheries. (2019). doi: 10.1016/j.aaf.2019.02.008. [Google Scholar]
- Cripps, G., Lindeque, P., Flynn, K. J. Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biology, 20(11). P. 3377–3385. (2014). doi: 10.1111/gcb.12582. [CrossRef] [PubMed] [Google Scholar]
- M. Tsuzuki, E. Ohnuma, N. Sato, T. Takaku, A. Kawaguchi. Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiology, 93. P. 851–856. (1990). [CrossRef] [PubMed] [Google Scholar]
- G. Yadav, A. Karemore, S.K. Dash, R. Sen, Performance evaluation of green microalgal CO2 sequestration in closed photobioreactor using in situ generated flue gas, Bioresource Technology (2015). doi: http://dx.doi.org/10.1016/j.biortech.2015.04.040. [Google Scholar]
- M.L. Ghirardi, M.C. Posewitz, P.C. Maness, A. Dubini, J. Yu, M. Seibert. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu. Rev. Plant Biol. 58. P. 71–91. (2007). [CrossRef] [PubMed] [Google Scholar]
- K.D. Swanson, M.W. Ratzloff, D.W. Mulder, J.H. Artz, S. Ghose, A. Hoffman, S. White, O.A. Zadvornyy, J.B. Broderick, B. Bothner, P.W. King, J.W. Peters. [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. J. Am. Chem. Soc. 137. P. 1809–1816. (2015). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.