Open Access
Issue
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
Article Number 07019
Number of page(s) 11
Section Fuels, Engines, and Electric Transportation
DOI https://doi.org/10.1051/e3sconf/202459207019
Published online 20 November 2024
  1. J. Vachalek, L. Bartalsky, O. Rovny, D. Sismisova, M. Morhac and M. Loksik, The digital twin of an industrial production line within the industry 4.0 concept, in 2017 21st International Conference on Process Control (PC), (Strbske Pleso, Slovakia, 2017), pp. 258-262, DOI: 10.1109/PC.2017.7976223. [Google Scholar]
  2. G. N. Schroeder, C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques, A. Rettberg and C. E. Pereira, A Methodology for Digital Twin Modeling and Deployment for Industry 4.0, in Proceedings of the IEEE, 109(4), pp. 556–567, (2021), DOI: 10.1109/JPROC.2020.3032444. [Google Scholar]
  3. K. Zidek, J. Pitef, M. Adamek, P. Lazorik, A. Hosovsky, Digital Twin of Experimental Smart Manufacturing Assembly System for Industry 4.0 Concept, in Sustainability 2020, 12(9), p. 3658, DOI: 10.3390/su12093658. [Google Scholar]
  4. S. Ahmad, M. Spiryagin, Q. Wu, E. Bernal, Y. Sun, C. Cole and B. Makin, Development of a Digital Twin for prediction of rail surface damage in heavy haul railway operations, in Vehicle System Dynamics, 62(1), pp. 41–66, (2023), DOI: 10.1080/00423114.2023.2237620. [Google Scholar]
  5. H. Brandtstaedter, C. Ludwig, L. Hubner, E. Tsouchnika, A. Jungiewicz and U. Wever, DIGITAL TWINS FOR LARGE ELECTRIC DRIVE TRAINS, in 2018 Petroleum and Chemical Industry Conference Europe (PCIC Europe), (Antwerp, Belgium, 2018), pp. 1-5, DOI: 10.23919/PCICEurope.2018.8491413. [Google Scholar]
  6. T. Zhang, W. Du, G. Zhang and J. Wang, PHMof Rail Vehicle Based on Digital Twin, in 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), (Nanjing, China, 2021), pp. 1-5, DOI: 10.1109/PHM-Nanjing52125.2021.9613068. [Google Scholar]
  7. F. Peng, L. Zheng, Y. Peng, C. Fang and X. Meng, Digital Twin for rolling bearings: A review of current simulation and PHM techniques, in Measurement, 201(7), p. 111728, (2022), DOI: 10.1016/j.measurement.2022.111728. [Google Scholar]
  8. R. Chandaluri and U.R. Nelakuditi, Computers and Electrical Engineering, 116, p. 109225, (2024), DOI: 10.1016/j.compeleceng.2024.109225. [CrossRef] [Google Scholar]
  9. G. Davidyan, J. Bortman and R. Kenett, Scientific Reports, 13, p. 17959, (2023), DOI: 10.1038/s41598-023-45204-1. [CrossRef] [PubMed] [Google Scholar]
  10. M. Ahmadi, H. J. Kaleybar, M. Brenna, F. Castelli-Dezza and M. S. Carmeli, Adapting Digital Twin Technology in Electric Railway Power Systems, in 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), (Tabriz, Iran, 2021), pp. 1-6, DOI: 10.1109/PEDSTC52094.2021.9405876. [Google Scholar]
  11. L. Xiong, Y. He, Y. Chen, J. Lu and G. Niu, Reliability Engineering & System Safety, 240, p. 109627, (2023), DOI: doi.org/10.1016/j.ress.2023.109627. [CrossRef] [Google Scholar]
  12. G.D. Petropol-Serb, I. Petropol-Serb and G.-I. Petropol-Serb, Predictive Digital Twin Concept To Analyze The Influence Of Adhesion Force In The First Moment Of Movement Of A Motors Unit Equipped With Asynchronous Motors, in 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), (Napoli, Italy, 2024), pp. 412-417, DOI: 10.1109/SPEEDAM61530.2024.10609105. [Google Scholar]
  13. J. F. D. Santos, B.K. Tshoombe, L.H.B. Santos, et al., Digital Twin-Based Monitoring System of Induction Motors Using IoT Sensors and Thermo-Magnetic Finite Element Analysis, in IEEE Access, 11, pp. 1682–1693, (2023), DOI: 10.1109/ACCESS.2022.3232063. [Google Scholar]
  14. A. Zakharov, A. Zaitsev, A. Kobelev, et al., Russian Electrical Engineering, 93, pp. 235–241, (2022), DOI: 10.3103/S1068371222040113. [CrossRef] [Google Scholar]
  15. L. Liu, Y. Guo, W. Yin, G. Lei, J. Zhu, Design and Optimization Technologies of Permanent Magnet Machines and Drive Systems Based on Digital Twin Model, in Energies 2022, 15(17), p. 6186, DOI: 10.3390/en15176186. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.