Open Access
Issue
E3S Web Conf.
Volume 593, 2024
International EcoHarmony Summit (IES 2024): Navigating the Threads of Sustainability
Article Number 03004
Number of page(s) 15
Section Sustainable Agriculture and Food Systems
DOI https://doi.org/10.1051/e3sconf/202459303004
Published online 21 November 2024
  1. D.A. Zacarias, Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Climatic Change. 161, 4, 555–566 (2020). https://doi.org/10.1007/s10584-020-02722-5 [CrossRef] [Google Scholar]
  2. E. Mendesil, T. Tefera, C.A. Blanco, S.V. Paula-Moraes, F. Huang, D.M. Viteri, W.D. Hutchison, The invasive fall armyworm, Spodoptera frugiperda, in Africa and Asia: responding to the food security challenge, with priorities for integrated pest management research. J. Plant Dis. Prot. 130, 6, 1175–1206 (2023). https://doi.org/10.1007/s41348-023-00777-x [CrossRef] [Google Scholar]
  3. M. Chimweta, I.W. Nyakudya, L. Jimu, A. Bray-Mashingaidze, Fall armyworm [Spodoptera frugiperda (JE Smith)] damage in maize: management options for floodrecession cropping smallholder farmers. Int. J. Pest Manag. 66, 2, 142–154 (2020). https://doi.org/10.1080/09670874.2019.1577514 [CrossRef] [Google Scholar]
  4. R. Day, P. Abrahams, M. Bateman, T. Beale, V. Clottey, M. Cock, Y. Colmenarez, N. Corniani, R. Early, J. Godwin, J. Gomez, Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag. 28, 5, 196–201 (2017). https://doi.org/10.1564/v28_oct_02 [CrossRef] [Google Scholar]
  5. B.M. Prasanna, J.E. Huesing, R. Eddy, V.M. Peschke, Fall armyworm in Africa: a guide for integrated pest management (CDMX: CIMMYT, Mexico, 2018). [Google Scholar]
  6. F. Assefa, D. Ayalew, Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent. Food Agric. 5, 1, 1641902 (2019). https://doi.org/10.1080/23311932.2019.1641902 [CrossRef] [Google Scholar]
  7. I. Purnama, A. Mutamima, N. Nelvia, A. Arini, F. Ihsan, A.M. Yolanda, Pestisida dalam Sistem Pertanian Tropis Berkelanjutan (Soega Publishing, Indonesia, 2024). [Google Scholar]
  8. I. Purnama, A. Mutamima, Pestisida dalam Produk Pertanian: Dampak, Analisis, dan Strategi Pengelolaan (Soega Publishing, Indonesia, 2023). [Google Scholar]
  9. F. Malhat, O. Abdallah, C. Anagnostopoulos, M. Hussien, I. Purnama, R.M. Helmy, H. Soliman, D. El-Hefny, D., Residue, dissipation, and dietary intake evaluation of fenpyroximate acaricide in/on guava, orange, and eggplant under open field condition. Front. Nutr. 9, 939012 (2022). https://doi.org/10.3389/fnut.2022.939012 [CrossRef] [Google Scholar]
  10. V. Baudrot, R. Schouten, P.A. Umina, A.A. Hoffmann, L. Bird, M. Miles, J.L. Maino, Managing pesticide resistance in Spodoptera frugiperda: A spatially explicit framework for identifying optimal treatment strategies. Ecol. Model. 483, 110416 (2023). https://doi.org/10.1016/j.ecolmodel.2023.110416 [CrossRef] [Google Scholar]
  11. L. Ankit, V. Saha, K. Kishor, Bauddh, Impacts of synthetic pesticides on soil health and non-targeted flora and fauna. Ecological and practical applications for sustainable agriculture (Springer, Singapore, 2020). [Google Scholar]
  12. S. Arya, R. Kumar, O. Prakash, A. Rawat, A.K. Pant, Impact of insecticides on soil and environment and their management strategies. In Agrochemicals in soil and environment: Impacts and remediation (Springer Nature Singapore, Singapore, 2022). [Google Scholar]
  13. I. Purnama, F.M. Malhat, A. Mutamima, B. Rusdiarso, S. Noegrohati. Enhanced dissipation of azoxystrobin in loam soil under direct sunlight exposure. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-06152-z [Google Scholar]
  14. I. Purnama, M.F. Malhat, A. Mutamima, F. Ihsan, A. Amalia, A comparative study on pesticide residue profiles in locally grown rice from conventional and sustainable agricultural methods. Jurnal Ilmiah Pertanian, 20, 3, 219–231 (2023). https://doi.org/10.31849/jip.v20i3.17122 [CrossRef] [Google Scholar]
  15. Y. Mehmood, M. Arshad, H. Kaechele, N. Mahmood, R. Kong, Pesticide residues, health risks, and vegetable farmers’ risk perceptions in Punjab, Pakistan. Hum. Ecol. Risk Asses. An Int. J. 27, 3, 846–864 (2021). https://doi.org/10.1080/10807039.2020.1776591 [CrossRef] [Google Scholar]
  16. F. Thielecke, A.P. Nugent, Contaminants in grain—a major risk for whole grain safety?. Nutrients. 10, 9, 1213 (2018). https://doi.org/10.3390/nu10091213 [CrossRef] [PubMed] [Google Scholar]
  17. F. Malhat, M. Bakery, O. Abdallah, M. Youssef, W.A.E. Ghany, A. Abdallah, S. Greish, M.M. Gaber, I. Purnama, S. Abdelsalam, M.T. Ahmed, Dissipation kinetics and exposure of spirotetramat and pymetrozine in open fields, a prelude to risk assessment of green bean consumption. Environ. Sci. Pollut. Res. 30, 20, 57747–57758 (2023). https://doi.org/10.1007/s11356-023-26100-7 [CrossRef] [Google Scholar]
  18. F. Maqbool, S. Mostafalou, H. Bahadar, M. Abdollahi, Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life sciences, 145, 265–273 (2016). https://doi.org/10.1016/j.lfs.2015.10.022 [CrossRef] [PubMed] [Google Scholar]
  19. S. Mostafalou, M. Abdollahi, Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 268, 2, 157–177 (2013). https://doi.org/10.1016/j.taap.2013.01.025 [CrossRef] [Google Scholar]
  20. N. Ahmed, M. Alam, M. Saeed, H. Ullah, T. Iqbal, K.A. Al-Mutairi, K. Shahjeer, R. Ullah, S. Ahmed, N.A.A.H Ahmed, H.F. Khater, Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. Global decline of insects, 11, 1–19 (2021). https://doi.org/10.5772/intechopen.100416 [Google Scholar]
  21. R. Silaban, I. Lubis, R.E. Siregar, P. Agus, Production of liquid smoke from the combination of coconut shell and empty fruit bunch through pyrolysis process. In Proceedings of the 4th International Conference on Innovation in Education, Science and Culture, ICIESC 2022, Medan, Indonesia, October 11 (2022). http://dx.doi.org/10.4108/eai.11-10-2022.2325589 [Google Scholar]
  22. A. Mutamima, S. Sunarno, I. Purnama, C.D. Alfarisi, A. Fadli, S.R. Yenti, S.D.A. Barus, Optimizing Coconut Shell Liquid Smoke as A Natural Preservative in Advancing Meatball Production. Dinamisia: Jurnal Pengabdian Kepada Masyarakat, 8, 2, 562–569 (2024). https://doi.org/10.31849/dinamisia.v8i2.18223 [Google Scholar]
  23. P. Schroeder, V.B. Pereira, A. Ventura, J. Andrade, M.K.K. Figueiredo, E.F. das Chagas, D. de Almeida Azevedo, G.A. Romeiro, R.V.S. da Silva, Chemical Evaluation via HighResolution Techniques and Biopesticide Potential of Bio-Oil and Aqueous Phase from Slow Pyrolysis of Passion Fruit Seed Cake. Waste Biomass Valori. 14, 11, 3621–3642 (2023). https://doi.org/10.1007/s12649-022-01980-x [CrossRef] [Google Scholar]
  24. R.I. Urrutia, C. Yeguerman, E. Jesser, V.S. Gutierrez, M.A. Volpe, J.O.W. González, Sunflower seed hulls waste as a novel source of insecticidal product: Pyrolysis bio-oil bioactivity on insect pests of stored grains and products. J. Clean. Prod. 287, 125000 (2021). https://doi.org/10.1016/j.jclepro.2020.125000 [CrossRef] [Google Scholar]
  25. M. Mashuni, M. Jahiding, L.O. Kadidae, N.A. Yanti, F.H. Hamid, Chromatography and spectroscopy analysis of the pyrolysis products of coconut shell as a strong antifungal agent on cocoa seeds. In AIP Conference Proceedings, 2973, 1. AIP Publishing, March (2024). https://doi.org/10.1063/5.0184526 [Google Scholar]
  26. A. Ahmed, A. Tariq, S. Habib, Interactive biology of auxins and phenolics in plant environment. Plant phenolics in sustainable agriculture Vol 1 (Springer Singapore, Singapore, 2020). [Google Scholar]
  27. M. Mai, J. Amendt, Effect of different post-feeding intervals on the total time of development of the blowfly Lucilia sericata (Diptera: Calliphoridae). Forensic Sci. Int. 221, 1-3, 65–69 (2012). https://doi.org/10.1016/j.forsciint.2012.04.001 [CrossRef] [Google Scholar]
  28. K. Phambala, Y. Tembo, T. Kasambala, V.H. Kabambe, P.C. Stevenson, S.R. Belmain, Bioactivity of common pesticidal plants on fall armyworm larvae (Spodoptera frugiperda). Plants. 9, 1, 112 (2020). https://doi.org/10.3390/plants9010112 [CrossRef] [PubMed] [Google Scholar]
  29. D.M.D. Silva, A.D.F. Bueno, K. Andrade, C.D.S. Stecca, P.M.O.J. Neves, M.C.N.D. Oliveira, Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola. 74, 18–31 (2017). http://dx.doi.org/10.1590/1678-992x-2015-0160 [CrossRef] [Google Scholar]
  30. A. Alharbi, A. Alanazi, Studying the effectiveness of Jatropha carcus L. Extract as a repellent, antifeedant, and toxic substance against red palm weevil (Rhynchophorus Ferrugineus) adult insects in Saudi Arabia. J. King Saud Univ. Sci. 36, 8, 103322 (2024). https://doi.org/10.1016/j.jksus.2024.103322 [CrossRef] [Google Scholar]
  31. A.P. Henagamage, M.N. Ranaweera, C.M. Peries, M.M.S.N. Premetilake, Repellent, antifeedant and toxic effects of plants-extracts against Spodoptera frugiperda larvae (fall armyworm). Biocatal. Agric. Biotechnol. 48, 102636 (2023). https://doi.org/10.1016/j.bcab.2023.102636 [CrossRef] [Google Scholar]
  32. M. Homayoonzadeh, K. Talebi, E. Torabi, H. Allahyari, J. Nozari, E.D. Scully, Effects of pyroligneous acid on life history and physiology of two pyralid pests of stored products. J. Stored Prod. Res. 97, 101971 (2022). https://doi.org/10.1016/j.jspr.2022.101971 [CrossRef] [Google Scholar]
  33. S. Kamatham, S. Munagapati, K.N. Manikanta, R. Vulchi, K. Chadipiralla, S.H. Indla, U.S. Allam, Recent advances in engineering crop plants for resistance to insect pests. Egypt. J. Biol. Pest Control. 31, 1–14 (2021). https://doi.org/10.1186/s41938-021-00465-8 [CrossRef] [Google Scholar]
  34. M.K. Dassanayake, C.H. Chong, T.J. Khoo, A. Figiel, A. Szumny, C.M. Choo, Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: A review. Foods, 10, 9, 2016 (2021). https://doi.org/10.3390/foods10092016 [CrossRef] [PubMed] [Google Scholar]
  35. M.M. Rahman, M.N. Morshed, S.M. Adnan, M.T.H. Howlader, Assessment of biorational larvicides and botanical oils against Culex quinquefasciatus Say (Diptera: Culicidae) larvae in laboratory conditions. Heliyon, 10, 11 (2024). https://doi.org/10.1016/j.heliyon.2024.e31453 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.