Open Access
Issue
E3S Web Conf.
Volume 593, 2024
International EcoHarmony Summit (IES 2024): Navigating the Threads of Sustainability
Article Number 06001
Number of page(s) 10
Section Business Ethics and Sustainability
DOI https://doi.org/10.1051/e3sconf/202459306001
Published online 21 November 2024
  1. B. Liu, Sentiment analysis: mining opinions, sentiments, and emotions. (2015). [CrossRef] [Google Scholar]
  2. A. Roihan, P. A. Sunarya, and A. S. Rafika, Pemanfaatan machine learning dalam berbagai bidang: review paper. IJCIT Indonesian J. Comput. Inf. Technol.. 5, 75–82, (2020). doi: 10.31294/ijcit.v5i1.7951. [Google Scholar]
  3. S. A. Kinholkar and K. C. Waghmare, Enhance digital marketing using sentiment analysis and end user behavior. Res. J. Eng. 1083–1086 (2016). [Google Scholar]
  4. M. H. Saragih and A. S. Girsang, Sentiment analysis of customer engagement on social media in transport online. Conf. Sustain. Inf. Eng. Technol. SIET. 24–29 (2018). doi: 10.1109/SIET.2017.830410. [Google Scholar]
  5. V. Yevgeniy and K. Murat, Adversarial machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12, 1–169 (2018). https://doi.org/10.2200/S00861ED1V01Y201806AIM039. [Google Scholar]
  6. B. O. C. R. Balasubramanyan From tweets to polls: linking text sentiment to public opinion time series. Proceedings of the Fourth International AAAI Conference on Web logs and Social Media, Washington, DC. 511–519 (2010). [Google Scholar]
  7. R. Agarwal, & V. Dhar, Big Data, data science, and analytics: the opportunity and challenge for is research. Information Systems Research. 25, 443–448 (2014). [CrossRef] [Google Scholar]
  8. G. Akehurst, P. Afonso, & M. Li, Exploring the impact of social media on SMEs performance. International Journal of Information Management. 44, 46–60 (2019). [Google Scholar]
  9. G. Burel, F. Gandon, & J. D. Zucker, a semantic web perspective on social media analytics. International Journal of Semantic Web and Information Systems. 13, 1–28 (2017). [Google Scholar]
  10. E. Cambria, & B. White, Jumping NLP curves: a review of natural language processing research. IEEE Computational Intelligence Magazine. 9, 48–57 (2014). [CrossRef] [Google Scholar]
  11. H. Chen, R. H. L. Chiang, & V. C. Storey, Business intelligence and analytics: from big data to big impact. MIS Quarterly. 36, 1165–1188 (2012). [CrossRef] [Google Scholar]
  12. W. Chung, Machine learning in social media analytics. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 49, 1100–1112 (2019). [Google Scholar]
  13. T. H. Davenport, & D. J. Patil, Data scientist: the sexiest job of the 21st century. Harvard Business Review, 90, 70–76 (2012). [Google Scholar]
  14. D. Dey, S. Saha, & S. Paul, Sentiment analysis of customer reviews using machine learning techniques. Procedia Computer Science. 79, 817–824 (2016). [CrossRef] [Google Scholar]
  15. B. Diaz-Agudo, & A. C. Dominguez-Brito, Sentiment analysis for small and mediumsized enterprises. International Journal of Computer Science and Information Security, 16, 30–37 (2018). [Google Scholar]
  16. C. N. Dos Santos, & M. Gatti, Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. 69–78 (2014). [Google Scholar]
  17. A. Gandomi, & M. Haider, Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management. 35, 137–144 (2015). [CrossRef] [Google Scholar]
  18. P. Gao, X. Liu, & X. Fang, Social media analytics and business value. Information & Management, 56, 103–115 (2019). [Google Scholar]
  19. J. Han, M. Kamber, & J. Pei, Data mining: concepts and techniques (3rd ed.). (Morgan Kaufmann. 2011). [Google Scholar]
  20. T. Hastie, R. Tibshirani, & J. Friedman, The elements of statistical learning: data mining, inference, and prediction (2nd ed.). (Springer 2009). [Google Scholar]
  21. C. J. Hutto, & E. Gilbert, Vader: a parsimonious rule-based model for sentiment analysis of social media text. In Eighth International Conference on Weblogs and Social Media. 216–225 (2014). [Google Scholar]
  22. S. Hwang, & S. Choi, Sentiment analysis for SMEs using machine learning: A case study on tripadvisor hotel reviews. Sustainability, 11, 597 (2019). [CrossRef] [Google Scholar]
  23. Y. Kim, convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1746–1751 (2014). [Google Scholar]
  24. S. S. Kumar, & M. Selvi, Sentiment analysis on twitter data using machine learning algorithms. Journal of Ambient Intelligence and Humanized Computing. 9, 1921–1929 (2018). [Google Scholar]
  25. D. Lazer, R. Kennedy, G, King, & A. Vespignani, The Parable of google flu: traps in big data analysis. Science. 343, 1203–1205 (2014). [CrossRef] [PubMed] [Google Scholar]
  26. L Liang, C. T. Hsieh, & J. H. Huang, Sentiment analysis of social media for tourism. Tourism Management. 65, 116–128 (2018). [CrossRef] [Google Scholar]
  27. B. Liu, Sentiment analysis and opinion mining. synthesis lectures on human. Language Technologies. 5, 1–167 (2012). [CrossRef] [Google Scholar]
  28. B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions (2nd ed, Cambridge University Press, 2015). [CrossRef] [Google Scholar]
  29. Y. Liu, Word embeddings. In M. Cheriet, J. Lu, R. Saeed, & M. Tompsett (Eds.), encyclopedia of biometrics. Springer. 1655–1660, (2015). [Google Scholar]
  30. C.D. Manning, P. Raghavan, & H. Schütze, Introduction to information retrieval. (Cambridge University Press, 2008). [Google Scholar]
  31. W. Medhat, A. Hassan, & H. Korashy, Sentiment analysis algorithms and applications: a survey. Ain Shams Engineering Journal. 5, 1093–1113 (2014). [CrossRef] [Google Scholar]
  32. T.M. Mitchell, Machine learning. McGraw Hill. (1997). [Google Scholar]
  33. B. Pang, & L. Lee, Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2, 1–135 (2008). [CrossRef] [Google Scholar]
  34. B. Pang, L. Lee, & S. Vaithyanathan, Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. 79–86 (2002). [Google Scholar]
  35. K. Ravi, & V. Ravi, A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Systems. 89, 14–46 (2015). [CrossRef] [Google Scholar]
  36. P. Resnik, & E. Hardisty, Gains and losses: a historical perspective on sentiment analysis. proceedings of the 48th annual meeting of the association for computational linguistics. 257–266 (2010). [Google Scholar]
  37. A. Sarker, & G.A. Gonzalez-Hernandez, Corpus for mining drug-related knowledge from twitter chatter: language models and their utilities. Data in Brief, 13, 695–701 (2017). [Google Scholar]
  38. A. Sehgal, & D. Mehrotra, Twitter sentiment analysis: a hybrid approach using nlp and machine learning. Procedia Computer Science, 122, 575–582 (2017). [Google Scholar]
  39. R. Sharda, D. Delen, & E. Turban, Analytics, data science, & artificial intelligence: systems for decision support (11th ed.). Pearson. (2021). [Google Scholar]
  40. L. Sun, & R. Dong, Sentiment analysis on social media for stock movement prediction. In 2017 IEEE International Conference on Big Data (Big Data). 3126–3133 (2017). [Google Scholar]
  41. Z Tian, Y. Liu, S. Yang, & H. Zhu, Sentiment analysis of chinese social media. Journal Of Electronic Commerce Research, 17, 110–122 (2016). [Google Scholar]
  42. M. Tsagkias, W. Weerkamp, M. De Rijke, & F.D. Jong, Predicting the volume of comments on online news stories. In Proceedings of the 18th ACM Conference on Information and Knowledge Management. 1765–1768 (2009). [Google Scholar]
  43. R. Turner, Sentiment analysis for small businesses. Journal of Small Business Management, 57, 1410–1427 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.