Open Access
Issue
E3S Web Conf.
Volume 593, 2024
International EcoHarmony Summit (IES 2024): Navigating the Threads of Sustainability
Article Number 09002
Number of page(s) 12
Section Renewable Energy Strategies
DOI https://doi.org/10.1051/e3sconf/202459309002
Published online 21 November 2024
  1. International Energy Agency (IEA), World Energy Outlook 2021. Paris: IEA (2021). [Google Scholar]
  2. N.L. Panwar, A.S. Paul, An overview of recent development in bio-oil upgrading and separation techniques, Environ. Eng. Res. 26, 5. https://doi.org/10.4491/eer.2020.382 [Google Scholar]
  3. I. Purnama, W. Trisunaryanti, K. Wijaya, A. Mutamima, W.C. Oh, R. Boukherroub, M. Aziz, Multi‐Pathways for Sustainable Fuel Production from Biomass Using Zirconium‐ Based Catalysts: A Comprehensive Review. Energy Technol. 12, 2, 2300901 (2024). [CrossRef] [Google Scholar]
  4. Jefriadi, S. Bahri, Sunarno, R. Jelita, Pyrolysis of cassava baggase into bio-oil using Ni/NZA catalysts, Konversi, 8, 2 (2019). http://dx.doi.org/10.20527/k.v8i2.7194 [CrossRef] [Google Scholar]
  5. Z. Wang, K.G. Burra, T. Lei, A.K. Gupta, Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review, Prog. Energ. Combust. 84 (2021). https://doi.org/10.1016/j.pecs.2020.100899 [CrossRef] [Google Scholar]
  6. S.B.E. Esso, Z. Xiong, W. Chaiwat, M.F. Kamara, X. Longfei, J. Xu, J. Ebako, L. Jiang, S. Su, S. Hu, Y. Wang, J. Xiang, Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism, Biomass and Bioenergy, 159 (2022). https://doi.org/10.1016/j.biombioe.2022.106415 [Google Scholar]
  7. Sunarno, S.R. Yenti, A. Mutamima, F.H. Husna, D.R. Wicakso, M.D. Isnaini, Catalytic co-pyrolysis of coal and polypropylene plastic into liquid fuel, Konversi, 13, 1 (2024). http://dx.doi.org/10.20527/k.v13i1.16043 [CrossRef] [Google Scholar]
  8. B. Lin, Q. Huang, Y. Chi, Y, Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality, Fuel Process. Technol. 177 (2018). https://doi.org/10.1016/j.fuproc.2018.05.002 [Google Scholar]
  9. R.N. Yanti, I.L. Hutasuhut, Potensi limbah padat perkebunan kelapa sawit di Provinsi Riau, Wahana Forestra: Jurnal Kehutanan, 15, 2 (2020). https://doi.org/10.31849/forestra.v15i2.4696 [Google Scholar]
  10. K. Kumari, S. Kumar, V. Rajagopal, A. Khare, R. Kumar, Emission from open burning of municipal solid waste in India, Environ. Technol. 40, 17 (2019). https://doi.org/10.1080/09593330.2017.1351489 [Google Scholar]
  11. S. Mor, K. Ravindra, Municipal solid waste landfills in lower-and middle-income countries: Environmental impacts, challenges and sustainable management practices, Process Saf. Environ. Prot. 174 (2023). https://doi.org/10.1016/j.psep.2023.04.014 [Google Scholar]
  12. Haryanto, A., Nita, R., Telaumbanua, M., Suharyatun, S., Hasanudin, U., Hidayat, W., D A Iryani, S. Triyono, Amrul, F.K. Wisnu, Torréfaction to improve biomass pellet made of oil palm empty fruit bunch, IOP Conf. Ser. Earth Environ. Sci. 749, 1. IOP Publishing (2021). https://doi.org/10.1088/1755-1315/749/1/012047 [CrossRef] [Google Scholar]
  13. W.H. Chen, J. Peng, X.T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 44, 2015. https://doi.org/10.1016/j.rser.2014.12.039 [Google Scholar]
  14. M.H. Rahman, P.R. Bhoi, P.L. Menezes, Pyrolysis of waste plastics into fuels and chemicals: A review. Renew. Sustain. Energy Rev. 188, 113799 (2023). https://doi.org/10.1016/j.rser.2023.113799 [CrossRef] [Google Scholar]
  15. A. Kumar, H.S. Pali, M. Kumar, A comprehensive review on the production of alternative fuel through medical plastic waste, Sustain. Energy Technol. Assess, 55, 102924 (2023). https://doi.org/10.1016/j.seta.2022.102924 [Google Scholar]
  16. F. Nardella, S. Bellavia, M. Mattonai, E. Ribechini, Co-pyrolysis of wood and plastic: Evaluation of synergistic effects and kinetic data by evolved gas analysis-mass spectrometry (EGA-MS). J. Anal. Appl. Pyrol. 159, 105308 (2021). https://doi.org/10.1016/j.jaap.2021.105308 [CrossRef] [Google Scholar]
  17. K.C. Sembiring, N. Rinaldi, S.P. Simanungkalit, Bio-oil from fast pyrolysis of empty fruit bunch at various temperature. Energy Procedia, 65 (2015). https://doi.org/10.1016/j.egypro.2015.01.052 [Google Scholar]
  18. Q. Rachmawati, W. Herumurti, Pengolahan sampah secara pirolisis dengan variasi rasio komposisi sampah dan jenis plastik. Abdul Teknik ITS, 4, 1 (2015). https://doi.org/10.12962/j23373539.v4i1.8848 [Google Scholar]
  19. Sunarno, I. Zahrina, W.R. Nanda, A. Amri, Upgrading of pyrolysis oil via catalytic co-pyrolysis of treated palm oil empty fruit bunch and plastic waste. Biomass Conv. Biorefin (2022). https://doi.org/10.1007/s13399-021-02243-w [Google Scholar]
  20. Sunarno, A. Randi, P.S. Utama, S.R. Yenti, W. Wisrayetti, D.R. Wicakso, Improving bio-oil quality via co-pyrolysis empty fruit bunches and polypropylene plastic waste. Konversi, 10, 2 (2021). https://doi.org/10.20527/k.v10i2.11384 [CrossRef] [Google Scholar]
  21. S. Zhang, H. Zhang, X. Liu, S. Zhu, L. Hu, Q. Zhang, Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Proces. Technol. 175 (2018). https://doi.org/10.1016/j.fuproc.2018.03.002 [Google Scholar]
  22. A. Kristiani, H. Abimanyu, A.H. Setiawan, Sudiyarmanto, F. Aulia, Effect of pretreatment process by using diluted acid to characteristic of oil palm’s frond, Energy Procedia, 32 (2013). https://doi.org/10.1016/j.egypro.2013.05.024 [Google Scholar]
  23. W. Chen, S. Shi, M. Chen, X. Zhou, Fast co-pyrolysis of waste newspaper with highdensity polyethylene for high yields of alcohols and hydrocarbons, Waste Manage. 67 (2017). https://doi.org/10.1016/j.wasman.2017.05.032 [Google Scholar]
  24. S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, R. Ruan, The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating, Bioresour. Technol. 135 (2013). https://doi.org/10.1016/j.biortech.2012.06.091 [Google Scholar]
  25. J. Meng, J. Park, D. Tilotta, S. Park, The effect of torrefaction on the chemistry of fastpyrolysis bio-oil, Bioresour. Technol. 111 (2012). https://doi.org/10.1016/j.biortech.2012.01.159 [Google Scholar]
  26. V. Srinivasan, S. Adhikari, S.A. Chattanathan, S. Park, Catalytic pyrolysis of torrefied biomass for hydrocarbons production, Energ. Fuel. 26, 12 (2012). https://doi.org/10.1021/ef301469t [Google Scholar]
  27. S.H. Chang, An overview of empty fruit bunch from oil palm as feedstock for bio-oil production, Biomass and Bioenergy, 62 (2014). https://doi.org/10.1016/j.biombioe.2014.01.002 [Google Scholar]
  28. R. Piloto-Rodríguez, I. Tobío, M. Ortiz-Alvarez, Y. Díaz, S. Konradi, S. Pohl, An approach to the use of Jatropha curcas by-products as energy source in agroindustry. Energy Sources A: Recovery Util. Environ. Eff., 1–21 (2020). https://doi.org/10.1080/15567036.2020.1749192 [Google Scholar]
  29. K.H. Khor, K.O. Lim, Z.A. Zainal, Characterization of bio-oil: a by-product from slow pyrolysis of oil palm empty fruit bunches, Am. J. Appl. Sci., 6, 9 (2009). https://doi.org/10.3844/ajassp.2009.1647.1652 [Google Scholar]
  30. X. Zhu, Y. Zhang, H. Ding, L. Huang, X. Zhu, Comprehensive study on pyrolysis and co-pyrolysis of walnut shell and bio-oil distillation residue, Energ. Conv. Manage. 168 (2018). https://doi.org/10.1016/j.enconman.2018.05.012 [Google Scholar]
  31. A.C. Dyer, M.A. Nahil, P.T. Williams, Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil, J. Energy Inst. 97, 27–36 (2021). https://doi.org/10.1016/j.joei.2021.03.022 [CrossRef] [Google Scholar]
  32. Sunarno, R. Martin, O.C. Pandia, S. Bahri, P.S. Utama, A. Amri, Catalytic co-pyrolysis of oil palm frond and plastic waste into liquid fuel using Ni-CaO catalyst. J. Adv. Res. Fluid Mech. Therm. Sci. 119, 146–163 (2024). https://doi.org/10.37934/arfmts.119.1.146163 [CrossRef] [Google Scholar]
  33. D. Aboelela, H. Saleh, A.M. Attia, Y. Elhenawy, T. Majozi, M. Bassyouni, Recent advances in biomass pyrolysis processes for bioenergy production: optimization of operating conditions. Sustainability, 15, 14 (2023). https://doi.org/10.3390/su151411238 [Google Scholar]
  34. Sunarno, I. Zahrina, S.R. Yenti, R.S. Irianty, P.S. Utama, Catalytic co-pyrolysis of palm oil empty fruit bunch and waste tire using calcium oxide catalysts for upgrading bio-oil. Mater. Today Proc. 87 (2023). https://doi.org/10.1016/j.matpr.2023.03.290 [Google Scholar]
  35. T. Yuan, A. Tahmasebi, J. Yu, Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor, Biores. Technol. 175 (2015). https://doi.org/10.1016/j.biortech.2014.10.108 [Google Scholar]
  36. U. Moralı, S. Şensöz, Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char, Fuel, 150 (2015). https://doi.org/10.1016/j.fuel.2015.02.095 [Google Scholar]
  37. K. Sahoo, A. Kumar, J.P. Chakraborty, A comparative study on valuable products: biooil, biochar, non-condensable gases from pyrolysis of agricultural residues, J. Mater. Cycles Waste Manag. 23 (2021). https://doi.org/10.1007/s10163-020-01114-2 [Google Scholar]
  38. W. Wang, Z. Luo, S. Li, S. Xue, Y. Yang, Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol, Catal. Sci. Technol. 9, 13 (2019). https://doi.org/10.1039/c9cy00576e [Google Scholar]
  39. O. Çepelioǧullar, A.E. Pütün, Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis, Energy Convers. Manage. 75 (2013). https://doi.org/10.1016/j.enconman.2013.06.036 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.