Open Access
Issue
E3S Web Conf.
Volume 593, 2024
International EcoHarmony Summit (IES 2024): Navigating the Threads of Sustainability
Article Number 14001
Number of page(s) 10
Section Environmental Innovation and Sustainable Technologies
DOI https://doi.org/10.1051/e3sconf/202459314001
Published online 21 November 2024
  1. L. Shano, T. K. Raghuvanshi, and M. Meten, Landslide susceptibility mapping using frequency ratio model: the case of Landslide susceptibility mapping using frequency ratio model : the case of Gamo highland, South Ethiopia. Arab. J. Geosci. 14, 1–18 (2021). https://doi.org/10.1007/s12517-021-06995-7 [CrossRef] [Google Scholar]
  2. B. Richer, A. Saeidi, M. Boivin, A. Rouleau, and Y. Lévesque, Development of a methodology for predicting landslide hazards at a regional scale. Geoenvironmental Disasters. 10, (2023). https://doi.org/10.1186/s40677-022-00231-4. [CrossRef] [PubMed] [Google Scholar]
  3. S. Yang and L.-J. Huang, Infiltration and failure behavior of an unsaturated soil slope under artificial rainfall model experiments. Water. 15, 1–14 (2023). https://doi.org/10.3390/w15081599. [Google Scholar]
  4. K. Chen, H. Zhang, C. Wu, L. Liao, and R. Zhu, The Effect of shear rate on the shear strength of saturated coal-measure soil, in Journal of Physics: Conference Series. 2202, 0–6 (2022). https://doi.org/10.1088/1742-6596/2202/1/012018. [Google Scholar]
  5. P. Batumalai, N. S. Mohd Nazer, N. Simon, N. Sulaiman, M. R. Umor, and M. A. Ghazali, Soil detachment rate of a rainfall-induced landslide soil. Water (Switzerland). 15, (2023). https://doi.org/10.3390/w15122149. [Google Scholar]
  6. C. Abanco, G. L. Bennett, A. J. Matthews, M. Anthony M. Matera, and F. J. Tan, The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Nat. Hazards Earth Syst. Sci. 21, 1531–1550 (2021). https://doi.org/10.5194/nhess-21-1531-2021. [CrossRef] [Google Scholar]
  7. S. Pradhan, D. G. Toll, N. J. Rosser, and M. J. Brain, An investigation of the combined effect of rainfall and road cut on landsliding. Eng. Geol. 307, 106787 (2022). https://doi.org/10.1016/j.enggeo.2022.106787. [CrossRef] [Google Scholar]
  8. M. Kohler, D. Hodel, L. Keller, A. Molinari, and A. M. Puzrin, Case study of an active landslide at the flank of a water reservoir and its response during earthquakes. Eng. Geol. 323, 107243 (2023) https://doi.org/10.1016/j.enggeo.2023.107243. [CrossRef] [Google Scholar]
  9. Y. Yao, Study on the influence of human activities on loess landslide. 120, 60–63 (2018). https://doi.org/10.2991/ifeesm-17.2018.12. [Google Scholar]
  10. A. T. Sudjianto, C. Aditya, A. Halim, and Fachrudin, The comparison study of the monopole tower foundation using cpt and laboratory data in Gresik District, East Java-Indonesia. EUREKA, Phys. Eng. 2021, 127–139 (2021). https://doi.org/10.21303/2461-4262.2021.001860. [CrossRef] [Google Scholar]
  11. N. S. Doan, Reliability analysis and uncertainty quantification of clay and sand slopes stability evaluated by fellenius and bishop’s simplified methods. Int. J. GeoEngineering. 14, (2023). https://doi.org/10.1186/s40703-023-00200-2. [Google Scholar]
  12. S. W. Moon, J. Noh, H. S. Kim, S. S. Kang, and Y. S. Seo, Comparison of factors influencing landslide risk near a forest road in Chungju-si, South Korea. Geoenvironmental Disasters. 11, (2024). https://doi.org/10.1186/s40677-024-00267-8. [Google Scholar]
  13. Purwanto, Z. Zakaria, E. T. Paripurno, and C. S. S. S. A. Boy Yoseph, Angle of slope and slope safety factor relationship in gendol river, southern slope of merapi volcano, Yogyakarta. Int. J. GEOMATE. 17, 93–99 (2019). https://doi.org/10.21660/2019.64.42673. [CrossRef] [Google Scholar]
  14. E. A. Montoya-Araque and S. Montoya-Noguera, Sensitivity analysis of a physically based model to assess rainfall-triggered shallow landslides. Geotech. Geol. Eng. 41, 2797–2814 (2023). https://doi.org/10.1007/s10706-023-02427-3. [CrossRef] [Google Scholar]
  15. S. Djelabi et al., Stability of a compacted sand slope model subject to crest load. Appl. Sci. 13, (2023). https://doi.org/10.3390/app13095562. [CrossRef] [Google Scholar]
  16. A. Munawir, The slope stability of sand slope with two rows pile reinforcing. Int. J. Geomate. 24, 52–59 (2023). https://doi.org/10.21660/2023.103.3572. [Google Scholar]
  17. J. Cogan and I. Gratchev, A study on the effect of rainfall and slope characteristics on landslide initiation by means of flume tests. Landslides. 16, 2369–2379 (2019). https://doi.org/10.1007/s10346-019-01261-0. [CrossRef] [Google Scholar]
  18. D. Kc, H. Dangi, and L. Hu, Assessing landslide susceptibility in the northern stretch of arun tectonic window, Nepal. Civil Eng. 3, 525–540 (2022). https://doi.org/10.3390/civileng3020031. [Google Scholar]
  19. B. Wang and S. Wang, Shear strength analysis and slope stability study of straight root herbaceous root soil composite. Appl. Sci. 13, (2023). https://doi.org/10.3390/app132312632. [Google Scholar]
  20. Z. Zhang, W. Qi, Z. Zhao, and T. Zheng, Influence of loess–mudstone strata structure on slope seismic stability of loess plateau in China. Appl. Sci. 13, (2023). https://doi.org/10.3390/app132312854. [Google Scholar]
  21. K. S. Kim, M. Il Kim, M. S. Lee, and E. S. Hwang, Regression equations for estimating landslide-triggering factors using soil characteristics. Appl. Sci. 10, (2020). https://doi.org/10.3390/app10103560. [Google Scholar]
  22. A. Noviyanto, J. Sartohadi, and B. H. Purwanto, The Distribution of soil morphological characteristics for landslide-impacted sumbing volcano, Central Java Indonesia. Geoenvironmental Disasters. 7, (2020). https://doi.org/10.1186/s40677020-00158-8. [CrossRef] [Google Scholar]
  23. S. B. Kusumayudha, A. Thamrin, and H. S. Purwanto, Rock slope kinematics analysis by markland method of the bener district, purworejo regency, Central Java, Indonesia. Int. J. Adv. Appl. Sci. 12, 111–120 (2023) https://doi.org/10.11591/ijaas.v12.i2.pp111-120. [Google Scholar]
  24. A. Rochim and Pratikso, Characterization of landslide and its earthwork solutions. in Journal of Physics: Conference Series. 1517 (2020). https://doi.org/10.1088/17426596/1517/1/012035. [CrossRef] [Google Scholar]
  25. F. H. Ali and N. Osman, Shear strength of a soil containing vegetation roots. Soils Found. 48, 587–596 (2008). https://doi.org/10.3208/sandf.48.587. [CrossRef] [Google Scholar]
  26. C. W. W. Ng, V. Kamchoom, and A. K. Leung, Centrifuge modelling of the effects of root geometry on transpiration-induced suction and stability of vegetated slopes. Landslides. 13, 925–938 (2016). https://doi.org/10.1007/s10346-015-0645-7. [CrossRef] [Google Scholar]
  27. P. D. Erskine and A. T. Fletcher, Novel ecosystems created by coal mines in central queensland’s bowen basin. Ecol. Process. 2, 1–12 (2013). https://doi.org/10.1186/2192-1709-2-33. [CrossRef] [Google Scholar]
  28. S. Wang and J. Xu, excessive water and drainage management in agriculture: disaster, facilities operation and pollution control. Water (Switzerland). 14, 12–14 (2022). https://doi.org/10.3390/w14162500. [Google Scholar]
  29. X. Yan, W. Zhan, Z. Hu, L. Wang, Y. Yu, and D. Xiao, Experimental study on the anti-clogging ability of siphon drainage and engineering application. Soils Found. 62, 101221 (2022). https://doi.org/10.1016/j.sandf.2022.101221. [CrossRef] [Google Scholar]
  30. R. Agusti, A. Mulyadi, and M. R. Amirulloh, The effectiveness of the disaster resilient village program by the local disaster management agency. J. Ilm. Ilmu Adm. Publik J. Pemikir. dan Penelit. Adm. Publik. 13, 503–512 (2023). [Google Scholar]
  31. W. Muharromah, A. S. Subiyanto, F. B. Bahar, P. Widodo, and W. Wilopo, Implementation of the disaster resistant village program in increasing preparedness communities In Cipayung Datar Village, Megamendung Sub-District, Bogor District. Int. J. Humanit. Educ. Soc. Sci. 3, 27–33 (2023). https://doi.org/10.55227/ijhess.v3i1.461. [Google Scholar]
  32. R. Tom, A. Johny, R. Jasdeen, S. Mehrin, and M. D. D. Rajan, Landslide early warning system by analyzing soil moisture and land movement. 8, 48–54 (2023). [Google Scholar]
  33. R. Hidayat and M. D. Munir, Development of landslide early warning system in Indonesia. Proceedings PIT IAGI 51st (2022). [Google Scholar]
  34. A. S. Prasad, B. W. Pandey, W. Leimgruber, and R. M. Kunwar, Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenvironmental Disasters. 3, (2016). https://doi.org/10.1186/s40677-016-0037-x. [CrossRef] [Google Scholar]
  35. K. Ullah, Y. Wang, Z. Fang, L. Wang, and M. Rahman, Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geosci. Front. 13, 101425 (2022). https://doi.org/10.1016/j.gsf.2022.101425. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.