Open Access
Issue
E3S Web Conf.
Volume 594, 2024
2nd International Conference on Environment and Smart Society (ICEnSO 2024)
Article Number 06001
Number of page(s) 8
Section Smart Environment Monitoring System
DOI https://doi.org/10.1051/e3sconf/202459406001
Published online 22 November 2024
  1. L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, and R. B. Polder, Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Weinheim, Germany: Wiley VCH, 2013. [CrossRef] [Google Scholar]
  2. N. Russo, M. Gastaldi, L. Schiavi, A. Strini, and F. Lollini, “Chloride penetration resistance in sound and micro-cracked concretes through different experimental techniques,” Constr Build Mater, vol. 343, p. 128098, Aug. 2022, doi: 10.1016/j.conbuildmat.2022.128098. [CrossRef] [Google Scholar]
  3. J. J. Liao, J. J. Zeng, W. M. Quach, and J. K. Zhou, “Axial compressive behavior and model assessment of FRP-confined seawater sea-sand concrete-filled stainless steel tubular stub columns,” Compos Struct, vol. 311, p. 116782, May 2023, doi: 10.1016/J.COMPSTRUCT.2023.116782. [CrossRef] [Google Scholar]
  4. M. U. Khan, S. Ahmad, and H. J. Al-Gahtani, “Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time,” International Journal of Corrosion, vol. 2017, pp. 1–9, 2017, doi: 10.1155/2017/5819202. [CrossRef] [Google Scholar]
  5. M. S. Ali, E. Leyne, M. Saifuzzaman, and M. S. Mirza, “An experimental study of electrochemical incompatibility between repaired patch concrete and existing old concrete,” Constr Build Mater, vol. 174, pp. 159–172, Jun. 2018, doi: 10.1016/J.CONBUILDMAT.2018.04.059. [CrossRef] [Google Scholar]
  6. L. Peng, W. Zeng, Y. Zhao, L. Li, C. sun Poon, and H. Zheng, “Steel corrosion and corrosion-induced cracking in reinforced concrete with carbonated recycled aggregate,” Cem Concr Compos, vol. 133, p. 104694, Oct. 2022, doi: 10.1016/J.CEMCONCOMP.2022.104694. [CrossRef] [Google Scholar]
  7. X. Zhang, Y. Zhang, B. Liu, B. Liu, W. Wu, and C. Yang, “Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams,” Eng Fail Anal, vol. 127, p. 105538, Sep. 2021, doi: 10.1016/j.engfailanal.2021.105538. [CrossRef] [Google Scholar]
  8. T. El Maaddawy and K. Soudki, “A model for prediction of time from corrosion initiation to corrosion cracking,” Cem Concr Compos, vol. 29, no. 3, pp. 168–175, Mar. 2007, doi: 10.1016/j.cemconcomp.2006.11.004. [CrossRef] [Google Scholar]
  9. E. Lozinguez, J. F. Barthélémy, V. Bouteiller, and T. Desbois, “Contribution of Sacrificial Anode in reinforced concrete patch repair: Results of numerical simulations,” Constr Build Mater, vol. 178, pp. 405–417, Jul. 2018, doi: 10.1016/J.CONBUILDMAT.2018.05.063. [CrossRef] [Google Scholar]
  10. J. Tashan, “Flexural behavior evaluation of repaired high strength geopolymer concrete,” Compos Struct, vol. 300, p. 116144, Nov. 2022, doi: 10.1016/J.COMPSTRUCT.2022.116144. [CrossRef] [Google Scholar]
  11. Design Manual for Road and Bridges, Inspection and repair of concrete highway structures departmental standard, Section 3., vol. 3. United Kingdom: Highways England, 1990. [Google Scholar]
  12. M. Zhang, H. Xu, A. L. Phalé Zeze, X. Liu, and M. Tao, “Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection,” Cem Concr Compos, vol. 129, p. 104495, May 2022, doi: 10.1016/J.CEMCONCOMP.2022.104495. [CrossRef] [Google Scholar]
  13. P. Astuti, R. Afriansya, E. A. Anisa, and J. Randisyah, “Mechanical properties of selfcompacting geopolymer concrete utilizing fly ash,” 2022, p. 020028. doi: 10.1063/5.0094463. [Google Scholar]
  14. R. Afriansya, E. A. Anisa, P. Astuti, and M. D. Cahyati, “Effect of polypropylene fiber on workability and strength of fly ash-based geopolymer mortar,” E3S Web of Conferences, vol. 429, p. 05006, Sep. 2023, doi: 10.1051/e3sconf/202342905006. [CrossRef] [EDP Sciences] [Google Scholar]
  15. R. Afriansya, P. Astuti, V. S. Ratnadewati, J. Randisyah, T. Y. Ramadhona, and E. A. Anisa, “Investigation of setting time and flowability of geopolymer mortar using local industry and agriculture waste as precursor in indonesia,” International Journal of GEOMATE, vol. 21, no. 87, 2021, doi: 10.21660/2021.87.j2325. [CrossRef] [Google Scholar]
  16. P. Astuti, R. Afriansya, E. A. Anisa, S. D. Puspitasari, and A. Y. Purnama, “The potential use of agriculture pozzolan waste as supplementary cementitious materials by integrating with biomass,” 2022, p. 040017. doi: 10.1063/5.0104926. [Google Scholar]
  17. M. Babaee, M. S. H. Khan, and A. Castel, “Passivity of embedded reinforcement in carbonated low-calcium fly ash-based geopolymer concrete,” Cem Concr Compos, vol. 85, pp. 32–43, Jan. 2018, doi: 10.1016/j.cemconcomp.2017.10.001. [CrossRef] [Google Scholar]
  18. Herwani, I. Pane, I. Imran, and B. Budiono, “Compressive Strength of Fly ash-based Geopolymer Concrete with a Variable of Sodium Hydroxide (NaOH) Solution Molarity,” MATEC Web of Conferences, vol. 147, p. 01004, Jan. 2018, doi: 10.1051/matecconf/201814701004. [CrossRef] [EDP Sciences] [Google Scholar]
  19. S. W. M. Supit, F. U. A. Shaikh, and P. K. Sarker, “Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar,” Constr Build Mater, vol. 51, pp. 278–286, Jan. 2014, doi: 10.1016/j.conbuildmat.2013.11.002. [CrossRef] [Google Scholar]
  20. R. P. Singh, K. R. Vanapalli, V. R. S. Cheela, S. R. Peddireddy, H. B. Sharma, and B. Mohanty, “Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts,” Constr Build Mater, vol. 378, p. 131168, May 2023, doi: 10.1016/J.CONBUILDMAT.2023.131168. [CrossRef] [Google Scholar]
  21. P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, “Comparative study on the characteristics of fly ash and bottom ash geopolymers,” Waste Management, vol. 29, no. 2, pp. 539–543, Feb. 2009, doi: 10.1016/j.wasman.2008.06.023. [CrossRef] [Google Scholar]
  22. C. Anish, R. Venkata Krishnaiah, and K. Vijaya Bhaskar Raju, “Strength behavior of green concrete by using fly ash and silica fume,” Mater Today Proc, May 2023, doi: 10.1016/J.MATPR.2023.04.604. [Google Scholar]
  23. V. M. Nguyen, T. B. Phung, D. T. Pham, and L. S. Ho, “Mechanical properties and durability of concrete containing coal mine waste rock, F-class fly ash, and nano-silica for sustainable development,” Journal of Engineering Research, p. 100097, May 2023, doi: 10.1016/j.jer.2023.100097. [Google Scholar]
  24. S. K. Shill, S. Al-Deen, M. Ashraf, and W. Hutchison, “Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously,” Constr Build Mater, vol. 239, p. 117886, Apr. 2020, doi: 10.1016/J.CONBUILDMAT.2019.117886. [CrossRef] [Google Scholar]
  25. W. Liang et al., “Mixed artificial intelligence models for compressive strength prediction and analysis of fly ash concrete,” Advances in Engineering Software, vol. 185, p. 103532, Nov. 2023, doi: 10.1016/J.ADVENGSOFT.2023.103532. [CrossRef] [Google Scholar]
  26. C.-H. Huang, S.-K. Lin, C.-S. Chang, and H.-J. Chen, “Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash,” Constr Build Mater, vol. 46, pp. 71–78, Sep. 2013, doi: 10.1016/j.conbuildmat.2013.04.016. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.