Open Access
Issue
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
Article Number 01016
Number of page(s) 8
Section Civil, Materials and Environment for Sustainability ICCMES 2024
DOI https://doi.org/10.1051/e3sconf/202459601016
Published online 22 November 2024
  1. Yaman, N., & Abd Rashid, A. F. (2021). The potential of carbon footprint reduction of a mid-rise residential building in Sarawak. Built Environment Journal, 18(1), 1. https://doi.org/10.24191/bej.v18i1.12195 [CrossRef] [Google Scholar]
  2. Kumar, R., Thakur, A., & Tiwary, A. K.(2021). A comparative study on conventional clay bricks and Autoclaved aerated concrete blocks. IOP Conference Series: Earth and Environmental Science, 889(1), 012061. https://doi.org/10.1088/1755-1315/889/1/012061 [CrossRef] [Google Scholar]
  3. Islam, M. M., Rashid, M. H., & Muntasir, M. A. (2023). Effect of sand and lime on physical and mechanical properties of autoclaved aerated concrete. AIP Conference Proceedings, 2713, 020003. https://doi.org/10.1063/5.0129829 [CrossRef] [Google Scholar]
  4. Wahane, A. (2017). Manufacturing process of aac block. Raipur INDIA: International Journal of Advance Research in Science and Engineering [Google Scholar]
  5. Lakhani, R., & Kumar, R. (2015). Effective Utilization of Limestone Slurry Waste as Partial Replacement of Sand for Non-structural Cellular Foamed Concrete Blocks. RILEM Proceedings of International Conference on Sustainable Structural Concrete. http://www.rilem.org/gene/main.php?base=500218&id_publication=443&id_papier=1038 [Google Scholar]
  6. Kumar, R., Lakhani, R., & Tomar, P. (2018). A simple novel mix design method and properties assessment of foamed concretes with limestone slurry waste. Journal of Cleaner Production, 171, 1650–1663. https://doi.org/10.1016/j.jclepro.2017.10.073 [CrossRef] [Google Scholar]
  7. Kumar, R., Srivastava, A., & Lakhani, R.(2021). Industrial wastes-cum-Strength enhancing additives incorporated lightweight aggregate concrete (LWAC) for energy efficient building: A comprehensive review. Sustainability, 14(1), 331. https://doi.org/10.3390/su14010331 [CrossRef] [Google Scholar]
  8. Kumar, R., Lakhani, R., & Kumar, A. (2021). Physico-mechanical and thermal properties of lightweight structural concrete with light expanded clay aggregate for energy-efficient buildings. Lecture Notes in Civil Engineering, 175–185. https://doi.org/10.1007/978-981-16-6557-8_14 [Google Scholar]
  9. Kumar, R. and Lakhani, R. (2021). Development of lightweight aggregate concrete with optimum thermal transmittance for opaque wall assembly in composite climates. Abstracts of International Conferences and Meetings, DOI: https://doi.org/10.5281/zenodo.5051936 [Google Scholar]
  10. Verma, P., Kumar, R., Mukherjee, S., & Sharma, M. (2024). Sustainable self- compacting concrete with marble slurry and fly ash: Statistical modeling, microstructural investigations, and rheological characterization. Journal of Building Engineering, 94, 109785. https://doi.org/10.1016/j.jobe.2024.109785 [CrossRef] [Google Scholar]
  11. Semwal,S., Abhilasha Prajapati, Kumar, R., Kashyap, S., Khan, S., Chidambaram, RS., Joshi,G., Lakhani, R. (2024). Thermo- mechanical behaviour of lightweight precast sandwich panel incorporated with solid waste An Experimental Investigation. Technologies for Sustainable Buildings and Infrastructure, Springer.DOI : 10.1007/978-981-97-4844-0 [Google Scholar]
  12. Kumar, R. (2022). Influence on hydration and Microstructural properties of low-carbon cementitious binder modified with water- soluble polymer and fly ash. Lecture Notes in Civil Engineering, 1–12. https://doi.org/10.1007/978-981-19-3371-4_1 [Google Scholar]
  13. Islam, M. M., Rashid, M. H., & Muntasir, M. A. (2022). Influence of aluminium and Autoclaving temperature on the properties of Autoclaved aerated concrete. Journal of Engineering Science, 12(3), 11–17. https://doi.org/10.3329/jes.v12i3.57475 [CrossRef] [Google Scholar]
  14. Kumar, R., & Srivastava, A. (2022). Influence of lightweight aggregates and supplementary cementitious materials on the properties of lightweight aggregate concretes. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(2), 663–689. https://doi.org/10.1007/s40996-022-00935-5 [Google Scholar]
  15. Kumar, R. (2021). Effects of high volume dolomite sludge on the properties of eco- efficient lightweight concrete: Microstructure, statistical modeling, multi-attribute optimization through derringer’s desirability function, and life cycle assessment. Journal of Cleaner Production, 307, 127107. https://doi.org/10.1016/j.jclepro.2021.127107 [CrossRef] [Google Scholar]
  16. Abhilasha, Kumar, R., Lakhani, R., Mishra, R. K., & Khan, S. (2023). Utilization of solid waste in the production of Autoclaved aerated concrete and their effects on its physio- mechanical and Microstructural properties: Alternative sources, characterization, and performance insights. International Journal of Concrete Structures and Materials, 17(1). https://doi.org/10.1186/s40069-022-00569-x [CrossRef] [Google Scholar]
  17. Kumar, R. (2020). Modified mix design and statistical modelling of lightweight concrete with high volume micro fines waste additive via the box-behnken design approach. Cement and Concrete Composites, 113, 103706. https://doi.org/10.1016/j.cemconcomp.2020.103706 [CrossRef] [Google Scholar]
  18. Mukherjee, S., Kumar, R., Sofi, A., & Behera, M. (2024). Rheological and mechanical properties of different types of lightweight aggregate concrete. Industry 4.0 with Modern Technology, 248-253. https://doi.org/10.1201/9781003450924-46 [Google Scholar]
  19. IS code 2185 (Part 3). Autoclaved cellular Aerated concrete blocks. [Google Scholar]
  20. Liu, Z., Takasu, K., Koyamada, H., & Suyama, H. (2022). A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS. Construction and Building Materials, 316,125776. https://doi.org/10.1016/j.conbuildmat.2021.125776 [Google Scholar]
  21. Fang, G., Bahrami, H., & Zhang, M. (2018). Mechanisms of autogenous shrinkage of alkali- activated fly ash-slag pastes cured at ambient temperature within 24 h. Construction and Building Materials, 171, 377- 387. https://doi.org/10.1016/j.conbuildmat.2018.03.155 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.