Open Access
Issue |
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 12 | |
Section | Civil, Materials and Environment for Sustainability ICCMES 2024 | |
DOI | https://doi.org/10.1051/e3sconf/202459601025 | |
Published online | 22 November 2024 |
- U. Ahmed, R. Mumtaz, H. Anwar, et al., “Efficient water quality prediction using supervised machine learning,” Water, vol. 11, no. 11, p. 2210, 2019. doi: 10.3390/w11112210. [CrossRef] [Google Scholar]
- T. H. H. Aldhyani, M. Al-Yaari, H. Alkahtani, and M. Maashi, “Water quality prediction using artificial intelligence algorithms,” Applied Bionics and Biomechanics, 2020. doi: 10.1155/2020/6659314. [Google Scholar]
- S. B. H. S. Asadollah, A. Sharafati, D. Motta, and Z. M. Yaseen, “River water quality index prediction and uncertainty analysis: a comparative study of machine learning models,” Journal of Environmental Chemical Engineering, vol. 9, no. 1, p. 104599, 2021. doi: 10.1016/j.jece.2020.104599. [CrossRef] [Google Scholar]
- M. Azrour, Y. Farhaoui, M. Ouanan, and A. Guezzaz, “SPIT detection in telephony over IP using K-means algorithm,” Procedia Computer Science, vol. 148, pp. 542–551, 2019. doi: 10.1016/j.procs.2019.01.027. [CrossRef] [Google Scholar]
- S. Bekesiene, I. Meidute-Kavaliauskiene, and V. Vasiliauskiene, “Accurate prediction of concentration changes in ozone as an air pollutant by multiple linear regression and artificial neural networks,” Mathematics, vol. 9, no. 4, p. 356, 2021. doi: 10.3390/math9040356. [CrossRef] [Google Scholar]
- G. Ciulla and A. D’Amico, “Building energy performance forecasting: a multiple linear regression approach,” Applied Energy, vol. 253, p. 113500, 2019. doi: 10.1016/j.apenergy.2019.113500. [CrossRef] [Google Scholar]
- T. Deng, K.-W. Chau, and H.-F. Duan, “Machine learning based marine water quality prediction for coastal hydro-environment management,” Journal of Environmental Management, vol. 284, p. 112051, 2021. doi: 10.1016/j.jenvman.2021.112051. [CrossRef] [PubMed] [Google Scholar]
- D. Dezfooli, S.-M. Hosseini-Moghari, K. Ebrahimi, and S. Araghinejad, “Classification of water quality status based on minimum quality parameters: application of machine learning techniques,” Modeling Earth Systems and Environment, 2018. doi: 10.1007/s40808-017-0406-9. [Google Scholar]
- El Bilali and A. Taleb, “Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment,” Journal of the Saudi Society of Agricultural Sciences, vol. 19, no. 7, pp. 439–451, 2020. doi: 10.1016/j.jssas.2020.08.001. [CrossRef] [Google Scholar]
- S. H. Ewaid, “Water quality evaluation of Al-Gharraf river by two water quality indices,” Applied Water Science, vol. 7, no. 7, pp. 3759–3765, 2017. [CrossRef] [Google Scholar]
- O. Griffiths, H. Henderson, and M. Simpson, Environmental Health Practitioner Manual: Common wealth of Australia. Accessed: Aug. 10, 2021. [Google Scholar]
- Guezzaz, Y. Asimi, M. Azrour, and A. Asimi, “Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection,” Big Data Mining and Analytics, vol. 4, no. 1, pp. 18–24, 2021. doi: 10.26599/BDMA.2020.9020019. [CrossRef] [Google Scholar]
- Q. Guo, T. Zhuang, Z. Li, and S. He, “Prediction of reservoir saturation field in high water cut stage by bore- ground electromagnetic method based on machine learning,” Journal of Petroleum Science and Engineering, vol. 204, p. 108678, 2021. doi: 10.1016/j.petrol.2021.108678. [CrossRef] [Google Scholar]
- H. Haghiabi, A. H. Nasrolahi, and A. Parsaie, “Water quality prediction using machine learning methods,” Water Quality Research Journal, vol. 53, no. 1, pp. 3– 13, 2018. doi: 10.2166/wqrj.2018.025. [CrossRef] [Google Scholar]
- R. D. Harkins, “An objective water quality index,” Journal (Water Pollution Control Federation), vol. 46, no. 3, pp. 588–591, 1974. [Google Scholar]
- M. K. Hasan, M. A. Alam, D. Das, E. Hossain, and M. Hasan, “Diabetes prediction using ensembling of different machine learning classifiers,” IEEE Access, vol. 8, pp. 76516–76531, 2020. doi: 10.1109/ACCESS.2020.2989857. [CrossRef] [Google Scholar]
- J. O. Ighalo, A. G. Adeniyi, and G. Marques, “Artificial intelligence for surface water quality monitoring and assessment: a systematic literature analysis,” Modeling Earth Systems and Environment, vol. 7, no. 2, pp. 669– 681, 2021. doi: 10.1007/s40808-020-01041-z. [CrossRef] [Google Scholar]
- M. Imani, M. M. Hasan, L. F. Bittencourt, K. McClymont, and Z. Kapelan, “A novel machine learning application: water quality resilience prediction model,” Science of the Total Environment, vol. 768, p. 144459, 2021. doi: 10.1016/j.scitotenv.2020.144459. [CrossRef] [Google Scholar]
- D. Kapadia and N. Jariwala, “Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques,” Modeling Earth Systems and Environment, 2021. doi: 10.1007/s40808-021-01220-6. [Google Scholar]
- R. Kicsiny, “Multiple linear regression based model for solar collectors,” Solar Energy, vol. 110, pp. 496–506, 2014. doi: 10.1016/j.solener.2014.10.003. [CrossRef] [Google Scholar]
- M. J. V. Kumar and K. Samalla, “Design and development of water quality monitoring system in IoT,” International Journal of Recent Technology and Engineering, vol. 7, no. 5, p. 7, 2019. [Google Scholar]
- D. Li and S. Liu, “System and platform for water quality monitoring,” Water Quality Monitoring and Management, 2019. doi: 10.1016/B978-0-12-811330-1.00003-X. [Google Scholar]
- H. Lu and X. Ma, “Hybrid decision tree-based machine learning models for short-term water quality prediction,” Chemosphere, vol. 249, p. 126169, 2020. doi: 10.1016/j.chemosphere.2020.126169. [CrossRef] [PubMed] [Google Scholar]
- Lumb, T. C. Sharma, J.-F. Bibeault, and P. Klawunn, “A comparative study of USA and Canadian water quality index models,” Water Quality, Exposure and Health, vol. 3, no. 3–4, pp. 203–216, 2011. [CrossRef] [Google Scholar]
- J. Mabrouki, M. Azrour, A. Boubekraoui, and S. El Hajjaji, “Intelligent system for the protection of people,” in Intelligent Systems in Big Data, Semantic Web and Machine Learning, Springer, 2021, pp. 157–165. [CrossRef] [Google Scholar]
- J. Mabrouki, M. Azrour, D. Dhiba, Y. Farhaoui, and S. E. Hajjaji, “IoT-based data logger for weather monitoring using Arduino-based wireless sensor networks with remote graphical application and alerts,” Big Data Mining and Analytics, vol. 4, no. 1, pp. 25–32, 2021. doi: 10.26599/BDMA.2020.9020018. [CrossRef] [Google Scholar]
- J. Mabrouki, M. Azrour, G. Fattah, D. Dhiba, and S. E. Hajjaji, “Intelligent monitoring system for biogas detection based on the Internet of Things: Mohammedia, Morocco city landfill case,” Big Data Mining and Analytics, vol. 4, no. 1, pp. 10–17, 2021. [CrossRef] [Google Scholar]
- J. Mabrouki, G. Fattah, N. Al-Jadabi, Y. Abrouki, D. Dhiba, M. Azrour, and S. E. Hajjaji, “Study, simulation and modulation of solar thermal domestic hot water production systems,” Modeling Earth Systems and Environment, 2021. doi: 10.1007/s40808-021-01200-w. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.