Open Access
Issue |
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 9 | |
Section | Civil, Materials and Environment for Sustainability ICCMES 2024 | |
DOI | https://doi.org/10.1051/e3sconf/202459601040 | |
Published online | 22 November 2024 |
- US EPA (United States Environmental Protection agency) EPA 832-R-93–003: A Plain English Guide to the EPA Part 503 Biosolids Rule. United States Environmental Protection agency, Washington, DC, pp 183. (1994) [Google Scholar]
- Poornima, R., Suganya, K. & Sebastian, S.P. Biosolids towards Back–To–Earth alternative concept (BEA) for environmental sustainability: a review. Environ Sci Pollut Res 29, 3246–3287 (2022). https://doi.org/10.1007/s11356-021-16639–8 [CrossRef] [PubMed] [Google Scholar]
- H. Asakura, K. Endo, M. Yamada, Y. Inoue, Y. Ono, Improvement of permeability of waste sludge by mixing with slag or construction and demolition waste. Waste Manag. 29(6), 1877–1884, (2009) [CrossRef] [PubMed] [Google Scholar]
- A. Klein, R. W. Sarsby, Problems in defining the geotechnical behaviour of wastewater sludges. In Geotechnics of High-Water Content Materials (Edil TB and Fox PJ (eds)). ASTM, West Conshohocken, PA, USA, Special Technical Publication no. 1374, pp. 74–87, (2000) https://doi.org/10.1520/STP14360S [Google Scholar]
- A. Koenig, J. N. Kay, I. M. Wan, Physical properties of dewatered wastewater sludge for land filling. Water Sci. Tech., 34(3), 533–540, (1996) [CrossRef] [Google Scholar]
- M. C. Lo, W. W. Zhou, M. K. Lee, Geotechnical characterization of dewatered sewage sludge for landfill disposal. Can. Geotech. J., 39, 1139–1149, (2002) https://doi.org/10.1139/t02-058 [CrossRef] [Google Scholar]
- B. C. O’Kelly, Geotechnical aspects of sewage sludge monofills. Proceeding of the Institution of Civil Engineers, Municipal Engineer 157 (ME3), September 2004, 193–197, (2004) [CrossRef] [Google Scholar]
- B. C. O’Kelly, Consolidation properties of a dewatered municipal sewage sludge. Can. Geotech. J., 42(5), 1350–1358, (2005) [CrossRef] [Google Scholar]
- B. C. O’Kelly, Mechanical properties of dewatered municipal sewage sludge. Waste Manag., 25, 47–52, (2005) [CrossRef] [PubMed] [Google Scholar]
- B. C. O’Kelly, Geotechnical properties of municipal sewage sludge. Geotech. & Geol. Engg., 24, 833–850, (2006) [CrossRef] [Google Scholar]
- R. J. Stone, E. I. Ekwue, R. O. Clarkem, Engineering properties of sewage sludge in Trinidad. J. Agr. Eng. Res., 70(2), 221–230, (1998) [CrossRef] [Google Scholar]
- B. Thakur, Biosolids as fill material in Road Embankment. M. Tech Thesis, Jaypee University of Information Technology, Waknaghat, Solan, India (2017) [Google Scholar]
- V. Suthagaran, A. Arulrajah, J. Wilson, M. W. Bo Field testing to determine the suitability of biosolids for embankment Fill. 12th European Biosolids and Organic Resources Conf., Manchester, UK, November, (2007) [Google Scholar]
- V. Suthagaran, A. Arulrajah, M. W. Bo, J. Wilson, Biosolids as a construction material for engineered fills. 10th Int. Conf. on Applications of Advanced Technologies in Transportation (AATT 2008), Athens, Greece, Vol. 3,1885–1890, (2008) [Google Scholar]
- V. Suthagaran, A. Arulrajah, J. Lamborn, J. Wilson, Geotechnical testing to determine the suitability of biosolids for embankment fill. Biosolids Specialty IV Conf., Adelaide, Australia, June, (2008) [Google Scholar]
- A. Arulrajah, M. M. Disfani, V. Suthagaran, M. Imteaz, Select chemical and engineering properties of wastewater Biosolids. Waste Manag., 31(12), 2522–2526, (2011) https://doi.org/10.1016/j.wasman.2011.07.014 [CrossRef] [PubMed] [Google Scholar]
- M. M. Disfani, A. Arulrajah, M. W. Bo, R. Hankour, Recycled crushed glass in road work applications. Waste Manag., 31(11), 2341–2351, (2011) 10.1016/j.wasman.2011.07.003 [CrossRef] [PubMed] [Google Scholar]
- IRC 75 Guidelines for design of high embankment Indian Roads Congress, New Delhi, India, (2015) [Google Scholar]
- A. Arulrajah, M. M. Disfani, V. Suthagaran, M. W. BO, Laboratory evaluation of the geotechnical characteristics of wastewater biosolids in road embankments. J. of Mat. in Civil Engg., 25(11) 1682–1691, (2013) https://doi.org/10.1061/(ASCE)MT.1943–5533.0000739. [CrossRef] [Google Scholar]
- Smart Water Fund, Geotechnical Characteristics of Biosolids and Their Suitability as Stabilized Fill Milestone 7: Final Evaluation Report, Swinsburn University of Technology, (2009) [Google Scholar]
- VicRoads, Use of clay rich biosolids as fill material of road embankment construction. Technical note 90, Victoria, Australia, (2007) [Google Scholar]
- S. S. Ramalakshmi, H. Haitherali, M. Sivagami, G. Anjali, Optimizing Construction and Demolition Waste Collection Systems Through Advanced Scheduling. The J. of Solid Waste Tech. and Manag., 12, 555–566, (2024). 10.5276/jswtm/iswmaw/502/2024.555 [CrossRef] [Google Scholar]
- P. Manisha, S. Jyothirmayee, A. Pravallika, B. Govardhan, C. Sucharitha, K. T. Babu, Analysis of Construction Waste Management in Rural and Urban Areas Based on C and D Waste Management Plan. Int. Research J. on Adv. Engg. Hub (IRJAEH), 2(6), 1698–1709, (2024) [CrossRef] [Google Scholar]
- E.K. Lauritzen, Construction, demolition and disaster waste management: An integrated and sustainable approach. CRC Press, (2018) [Google Scholar]
- A. Sharma, and N. Shrivastava, Geotechnical characterization of construction and demolition waste material blended with sandy soil. Int. J. of Geosyn. and Ground Engg, 9(4), 43, (2023) [CrossRef] [Google Scholar]
- A. Sharma, and N. Shrivastava, Settlement behavior of recycled construction and demolition waste aggregates with sandy soil by performing laboratory model plate load test, Trans. Infra. Geotech., 11(1), 303–326, (2024) [CrossRef] [Google Scholar]
- A. Nasiri, E. Abolfazl, and F. Ahmad, Assessment of Construction and Demolition Waste Depot Materials for Filling, Trans. Infra. Geotech. 11(1), 236–262, (2024) [CrossRef] [Google Scholar]
- Z. A. Khan, B. Umashankar, S. Costa, and N. Nguyen, A review on sustainable use of recycled construction and demolition waste aggregates in pavement base and subbase layers. Cleaner Mat. 13, 100266, (2024) https://doi.org/10.1016/j.clema.2024.100266 [Google Scholar]
- Y. Xue, A. Arulrajah, S. Horpibulsuk, and J. Chu, Strength and stiffness performance of geopolymer stabilized washed recycled sands derived from demolition wastes in pavement subgrades. Const. and Build. Mat., 369, 130618, (2023) [CrossRef] [Google Scholar]
- L. Li, H. Zhang, H. Xiao, Y. Pei, and J. Wang, Mechanical and microscopic properties of alkali- activated fly-ash-stabilised construction and demolition waste. Eur. J. of Env. and Civil Engg., 27(8), 2661–2677, (2023) [CrossRef] [Google Scholar]
- A. Arulrajah, F. Maghool, S. Horpibulsuk, M. W. Bo, and L. Shen, Laboratory evaluation of biosolids stabilized with demolition wastes as an embankment fill material. Lowland Tech. Int., 20(2), Sep (2018), 77–82, (2018) [Google Scholar]
- K. R. Reddy, G. Amaya-Santos, and G. Kumar, Environmental sustainability assessment of soil amendments for enhanced phytoremediation. In ASCE India Conf. 2017, 130–136. Reston, VA: American Society of Civil Engineers, (2017) [Google Scholar]
- IS 2720.04 (1985) Grain size analysis. BIS: Bureau of Indian Standards, New Delhi, India (1985) [Google Scholar]
- IRC: 37–2012 (2012) Guidelines for the Design of Flexible Pavements, (Third Revision), Indian Roads Congress, Kama Koti Marg, Sector-6, R.K. Puram, New Delhi, (2012) [Google Scholar]
- R. Wanare, K. R. Iyer, and T. N. Dave, Application of biosolids in civil engineering: State of the art. Mat. Today: Proc. 65, 1146–1153, (2022) [CrossRef] [Google Scholar]
- A. Mohajerani, S. Lound, G. Liassos, H. Kurmus, A. Ukwatta, and M. Nazari, Physical, mechanical and chemical properties of biosolids and raw brown coal fly ash, and their combination for road structural fill applications. J. of Cleaner Prod. (166), 1–11, (2017) [CrossRef] [Google Scholar]
- F. Maghoolpilehrood, M. M. Disfani, and A. Arulrajah, Geotechnical properties of biosolids stabilised with lime and cement.” In Proc. of the 12th Australia-New Zealand Conf. on Geomechanics, Wellington, New Zealand, (2015) [Google Scholar]
- R. Brinkgreve, W. Broere, and D. Waterman., Plaxis 2D-version 8. Swets and Zeitlinger publishers, (2002) [Google Scholar]
- S. Chakma, S. Mathur, Settlement of MSW landfills due to biodegradation. In: Proc. of Int. Conf. on Sustainable Solid Waste Management, 234–238, (2007) [Google Scholar]
- M. M. Disfani, A. Arulrajah, V. Suthagaran, M. W. Bo, Long-term settlement prediction for wastewater biosolids in road embankments. Resources, Cons. and Recycling, 77, 69–77, (2007) https://doi.org/10.1016/j.resconrec.2013.05.009 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.