Open Access
Issue |
E3S Web Conf.
Volume 596, 2024
International Conference on Civil, Materials, and Environment for Sustainability (ICCMES 2024)
|
|
---|---|---|
Article Number | 01048 | |
Number of page(s) | 7 | |
Section | Civil, Materials and Environment for Sustainability ICCMES 2024 | |
DOI | https://doi.org/10.1051/e3sconf/202459601048 | |
Published online | 22 November 2024 |
- Xu, M., Bao, Y., Wu, K., Xia, T., Clack, H. L., Shi, H., & Li, V. C. Influence of TiO2 incorporation methods on NOx abatement in Engineered Cementitious Composites. Construction and Building Materials, 221, 375–383.(2019). https://doi.org/10.1016/j.conbuildmat.2019.06.053 [CrossRef] [Google Scholar]
- Hamidi, F., & Aslani, F. TiO2-based photocatalytic cementitious composites: Materials, properties, influential parameters, and assessmenttechniques. Nanomaterials, 9(10), 1444. (2019). https://doi.org/10.3390/nano9101444 [CrossRef] [PubMed] [Google Scholar]
- Sharma, R., Shaw, R., Tiwari, S., & Tiwari, S. Nano- titania decorated fly ash as self-cleaning antibacterial cool pigment. ACS Sustainable Chemistry & Engineering, 3(11), 2796–2803.(2015). https://doi.org/10.1021/acssuschemeng.5b00692 [CrossRef] [Google Scholar]
- Kumar, A., Nayak, D., Sahoo, P., Nandi, B. K., Saxena, V. K., & Thangavel, R. Fabrication of porous and visible light active ZnO nanorods and ZnO@ TiO2 core–shell photocatalysts for self-cleaning applications. Physical Chemistry Chemical Physics, 25(24), 16423–16437. (2023). https://doi.org/10.1039/D3CP01996A [CrossRef] [PubMed] [Google Scholar]
- Chen, J., & Poon, C. S. Photocatalytic construction and building materials: from fundamentals to applications. Building and environment, 44(9), 1899–1906. (2009). https://doi.org/10.1016/j.buildenv.2009.01.002 [CrossRef] [Google Scholar]
- Kang, X., Liu, S., Dai, Z., He, Y., Song, X., & Tan, Z. Titanium dioxide: From engineering to applications. Catalysts,9(2), 191. (2019). https://doi.org/10.3390/catal9020191 [CrossRef] [Google Scholar]
- Zhang, R., Cheng, X., Hou, P., & Ye, Z. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81, 35–41. (2015). https://doi.org/10.1016/j.conbuildmat.2015.02.003 [CrossRef] [Google Scholar]
- Saud, P. S., Pant, B., Park, M., Chae, S. H., Park, S. J., Mohamed, E. N., … & Kim, H. Y. Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organicpollutants. Ceramics International, 41(1), 1771–1777. (2015). https://doi.org/10.1016/j.ceramint.2014.09.123 [CrossRef] [Google Scholar]
- Kim, H. J., Pant, H. R., Kim, J. H., Choi, N. J., & Kim, C. S. Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceramics International, 40(2), 3023–3029.(2014). https://doi.org/10.1016/j.ceramint.2013.10.005 [CrossRef] [Google Scholar]
- Chinthakunta, R., Ravella, D. P., Chand, M. S. R., & Yadav, M. J. (2021). Performance evaluation of self- compacting concrete containing fly ash, silica fume and nano titanium oxide. Materials Today: Proceedings, 43, 2348–2354.(2021). https://doi.org/10.1016/j.matpr.2021.01.681 [CrossRef] [Google Scholar]
- Ma, B., Li, H., Li, X., Mei, J., & Lv, Y. Influence of nano-TiO2 on physical and hydration characteristics of fly ash–cement systems. Construction and Building Materials, 122, 242–253. (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.087 [CrossRef] [Google Scholar]
- Meng, J., Zhong, J., Xiao, H., & Ou, J. Interfacial design of nano-TiO2 modified fly ash-cement based low carbon composites. Construction and Building Materials, 270, 121470.(2021). https://doi.org/10.1016/j.conbuildmat.2020.121470 [CrossRef] [Google Scholar]
- Mohseni, E., Ranjbar, M. M., & Tsavdaridis, K. D. (2015). Durability properties of high-performance concrete incorporating nano-TiO2 and fly ash. American Journal of Engineering and Applied Sciences, 8(4),519–526.(2015). http://dx.doi.org/10.3844/ajeassp.2015.519.526 [Google Scholar]
- Liu, Q., Jiang, Q., Huang, M., Xin, J., & Chen, P. The fresh and hardened properties of 3D printing cement- base materials with self-cleaning nano-TiO2: An exploratory study. Journal of Cleaner Production, 379,134804.(2022). https://doi.org/10.1016/j.jclepro.2022.134804 [PubMed] [Google Scholar]
- Duan, P., Yan, C., Luo, W., & Zhou, W. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Construction and Building Materials, 106, 115–125. (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.095 [CrossRef] [Google Scholar]
- Ng, D. S., Paul, S. C., Anggraini, V., Kong, S. Y., Qureshi, T. S., Rodriguez, C. R., … & Šavija, B. Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, 119627. (2020).https://doi.org/10.1016/j.conbuildmat.2020.119627 [CrossRef] [Google Scholar]
- Mohseni, E., Miyandehi, B., Yang, J., & Yazdi, M. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Construction and Building Materials, 84, 331–340. (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.006 [CrossRef] [Google Scholar]
- Ma, B., Li, H., Mei, J., Li, X., & Chen, F. Effects of Nano‐TiO2 on the Toughness and Durability of Cement‐ Based Material. Advances in Materials Science and Engineering, 2015(1), 583106. (2015). https://doi.org/10.1155/2015/583106 [Google Scholar]
- Wang, Z., Qin, W., & Zhang, L. Experimental study on mechanical properties of nano-modified cementpaste. Archives of Civil Engineering, 66(3). (2020). http://dx.doi.org/10.24425/ace.2020.134396 [Google Scholar]
- Palanisamy, C., Parvathikumar, G., Gnanasekaran, S., Chelladurai, S. J. S., Sivananthan, S., Adhavan, B., … & Tibebu, S. Study on the Behavior of Self‐Cleaning Impregnated Photocatalyst (TiO2) with Cement Mortar. Advances in Materials Science and Engineering, 2023(1),3571526. https://doi.org/10.1155/2023/3571526 [Google Scholar]
- Hegyi, A., Szilagyi, H., Grebenișan, E., Sandu, A. V., Lăzărescu, A. V., & Romila, C. (2020). Influence of TiO2 nanoparticles addition on the hydrophilicity of cementitious composites surfaces. Applied Sciences, 10(13),4501. (2023). https://doi.org/10.3390/app10134501 [CrossRef] [Google Scholar]
- Xu, M., Clack, H., Xia, T., Bao, Y., Wu, K., Shi, H., & Li, V. Effect of TiO2 and fly ash on photocatalytic NOx abatement of engineered cementitious composites. Construction and Building Materials, 236, 117559.(2020). https://doi.org/10.1016/j.conbuildmat.2019.117559 [CrossRef] [Google Scholar]
- Ünal, S., & Canbaz, M. Effect of industrial wastes on self-cleaning properties of concrete containing anatase- TiO2. Revista de la construcción, 21(3), 493–505. (2022). http://dx.doi.org/10.7764/rdlc.21.3.493 [CrossRef] [Google Scholar]
- Ariyanti, D., Afiatin, A., Shintawati, P. D., & Purbasari, A. TiO2-PDMS Super Hydrophilic Coating with Self- Cleaning and Antimicrobial Properties. Jurnal Kimia Sains dan Aplikasi, 24(6), 192–199. (2021). https://doi.org/10.14710/jksa.24.6.192-199 [CrossRef] [Google Scholar]
- García, L. D., Pastor, J. M., & Peña, J. Self cleaning and depolluting glass reinforced concrete panels: Fabrication, optimization and durability evaluation. Construction and Building Materials, 162, 9–19.(2018). https://doi.org/10.1016/j.conbuildmat.2017.11.156 [CrossRef] [Google Scholar]
- Grebenisan, E., Hegyi, A., & Lăzărescu, A. Research Regarding the Influence of TiO2 Nanoparticles on the Performance of Cementitious Materials. In IOP Conference Series: Materials Science and Engineering (Vol. 877, No. 1, p. 012004). IOP Publishing. (2020, June). DOI 10.1088/1757-899X/877/1/012004 [CrossRef] [Google Scholar]
- Reddy, N.A., Chandana, P.S. Microstructural analysis and densification of ordinary Portland cement mortars incorporated with minimal nano-TiO2: intermixing and surface coating on both fresh and hardened surfaces. Discov Mater 4, 28 (2024). https://doi.org/10.1007/s43939-024-00096-4 [CrossRef] [Google Scholar]
- Diamanti, M. V., Luongo, N., Massari, S., Spagnolo, S. L., Daniotti, B., & Pedeferri, M. P. Durability of self- cleaning cement-based materials. Construction and Building Materials, 280, 122442. (2021). https://doi.org/10.1016/j.conbuildmat.2021.122442 [CrossRef] [Google Scholar]
- Ankoji, P., & Rudramadevi, B. H. Structural and luminescence properties of Eu3+ doped LaAlO3 nanophosphors by hydrothermal method. Journal of Materials Science: Materials in Electronics, 30, 2750–2762. (2019). https://doi.org/10.1007/s10854-018–0551–6 [CrossRef] [Google Scholar]
- Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. Journal of applied Crystallography, 2(2), 65–71. (1969). https://doi.org/10.1107/S0021889869006558 [CrossRef] [Google Scholar]
- Reddy A, Panchangam S A Comparative Study on Structural, Crystallographic and Microstructural Properties of Nano-TiO2 Intermixed and Surface-Coated Portland Cement Mortars. Cureus J Eng 1: e6. (2024). doi:10.7759/6 [Google Scholar]
- Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., & Falcicchio, A. EXPO2013: a kit of tools for phasing crystal structures from powder data. Journal of Applied Crystallography, 46(4), 1231–1235. (2013). https://doi.org/10.1107/S0021889813013113 [CrossRef] [Google Scholar]
- Feng, D., Xie, N., Gong, C., Leng, Z., Xiao, H., Li, H., & Shi, X. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective. Industrial & Engineering Chemistry Research, 52(33), 11575–11582. (2013). https://doi.org/10.1021/ie4011595 [CrossRef] [Google Scholar]
- Chen, J., Kou, S. C., & Poon, C. S. Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 34(5), 642–649. (2012). https://doi.org/10.1016/j.cemconcomp.2012.02.009 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.