Open Access
Issue
E3S Web Conf.
Volume 599, 2024
6th International Conference on Science and Technology Applications in Climate Change (STACLIM 2024)
Article Number 02002
Number of page(s) 7
Section Water and Food Security
DOI https://doi.org/10.1051/e3sconf/202459902002
Published online 10 January 2025
  1. S.A. Mir, M.A. Shah, M.M. Mir, B.N. Dar, R. Greiner, S. Roohinejad, Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control 85, 235–244 (2018). [CrossRef] [Google Scholar]
  2. G.I. Balali, D.D. Yar, V.G.A. Dela, P. Adjei-Kusi, Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int. J. Microbiol. 2020, 3029295 (2020). [Google Scholar]
  3. B.C. Adebayo-Tayo, I.O. Okonko, C.U. Esen, N.N. Odu, Microorganisms associated with spoilage of stored vegetables in Uyo Metropolis, Akwa Ibom State, Nigeria. Nature and Science 10(3), 23–32 (2012). [Google Scholar]
  4. Q. Zhu, M.A. Hussain, Prevalence of Listeria species in fresh salad vegetables and Ready-to-Eat foods containing fresh produce marketed in Canterbury, New Zealand. Open J. Adv. Food Technol. Nutr. Sci. 1(1), 5–9 (2014). [Google Scholar]
  5. C.H. Kuan, Y. Rukayadi, S.H. Ahmad, C.W.J. Wan Mohamed Radzi, C.S. Kuan, et al., Antimicrobial resistance of Listeria monocytogenes and Salmonella Enteritidis isolated from vegetable farms and retail markets in Malaysia. Int. Food Res. J. 24(4), 1831–1839 (2017). [Google Scholar]
  6. I.A. Gillespie, P. Mook, C.L. Little, K. Grant, G.K. Adak, Listeria monocytogenes infection in the over-60s in England between 2005 and 2008: A retrospective case-control study utilizing market research panel data. Foodborne Pathog. Dis. 7, 1373–1379 (2010). [CrossRef] [PubMed] [Google Scholar]
  7. J.Y.H. Tang, N.A.S. Razali, L.A. Jalil, S.H. Mat-Sa’ad, Y. Nakaguchi, M. Nishibuchi, S. Radu, Detection of Listeria spp. and Listeria monocytogenes in vegetables by Loop-Mediated Isothermal Amplification (LAMP) and multiplex Polymerase Chain Reaction (PCR). J. Fundam. Appl. Sci. 9(2S), 698–714 (2017). [Google Scholar]
  8. R. Capita, C. Alonso-Calleja, M. Prieto, M.C. García Fernández, B. Moreno, Comparison of PALCAM and modified Oxford plating media for isolation of Listeria spp. in poultry meat following UVM II or Fraser secondary enrichment broths. Int. J. Food Microbiol. 18, 555–563 (2001). [CrossRef] [Google Scholar]
  9. CLSI, Performance standards for antimicrobial susceptibility testing, Twenty Second Informational Supplement, document M100-S22 (Clinical and Laboratory Standards Institute, Wayne, PA, 2018). [Google Scholar]
  10. P.H. Krumperman, Multiple antibiotic resistance indexing of Escherichia coli to identify highrisk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46 (1), 165–170 (1983). [CrossRef] [PubMed] [Google Scholar]
  11. B. Martín, A. Jofré, M. Garriga, M. Hugas, T. Aymerich, Quantification of Listeria monocytogenes in fermented sausages by MPN-PCR method. J. Appl. Microbiol. 39, 290–295 (2004). [CrossRef] [PubMed] [Google Scholar]
  12. U. Zitz, M. Zunabovic, K.J. Domig, P.T. Wilrich, W. Kneifel, Reduced detectability of Listeria monocytogenes in the presence of Listeria innocua. J. Food Prot. 74(8), 1282–1287 (2011). [CrossRef] [PubMed] [Google Scholar]
  13. A. Miceli, L. Settani, Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 69, 185199 (2019). [CrossRef] [Google Scholar]
  14. Ministry for Primary Industries of New Zealand, Guidance for the control of Listeria monocytogenes in Ready-to-Eat Foods (2017). Accessed on 22 May 2024 from https://www.mpi.govt.nz/dmsdocument/16300-Guidance-for-the-Control-of-Listeria-monocytogenes-in-Ready-to-eat-Foods-Part-1-Listeria-Management-and-Glossary. [Google Scholar]
  15. B. Ramos, T.R.S. Brandão, P. Teixeira, C.L.M. Silva, Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control 42, 38–42 (2014). [CrossRef] [Google Scholar]
  16. E. Likotrafiti, P. Smirniotis, A. Nastou, J. Rhoades, Effect of relative humidity and storage temperature on the behavior of Listeria monocytogenes on fresh vegetables. J. Food Saf. 33, 545–551 (2013). [CrossRef] [Google Scholar]
  17. S. Liu, A. Kilonzo-Nthenge, Prevalence of multidrug-resistant bacteria from U.S.-grown and imported fresh produce retailed in chain supermarkets and ethnic stores of Davidson County, Tennessee. J. Food Prot. 80, 506–514 (2017). [CrossRef] [Google Scholar]
  18. M. Rahman, M.U. Alam, S.K. Luies, A. Kamal, S. Ferdous, A. Lin, et al., Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: A scoping review. Int. J. Environ. Res. Public Health 19(1), 360 (2021). [CrossRef] [Google Scholar]
  19. F. Mesbah Zekar, S.A. Granier, M. Marault, L. Yaici, B. Gassilloud, C. Manceau, A. Touati, Y. Millemann, From farms to markets: Gram-negative bacteria resistant to third-generation cephalosporins in fruits and vegetables in a region of North Africa. Front. Microbiol. 8, 1569 (2017). [CrossRef] [Google Scholar]
  20. A.D. Pinto, L. Novello, F. Montemurro, E. Bonerba, G. Tantillo, Occurrence of Listeria monocytogenes in ready-to-eat foods from supermarkets in Southern Italy. New Microbiol. 33, 249–252 (2010). [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.