Open Access
Issue
E3S Web Conf.
Volume 599, 2024
6th International Conference on Science and Technology Applications in Climate Change (STACLIM 2024)
Article Number 05009
Number of page(s) 10
Section Community Climate Resilience and Adaptation
DOI https://doi.org/10.1051/e3sconf/202459905009
Published online 10 January 2025
  1. Vymazal J, Zhao Y, Mander Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol Eng. 2021 Nov 1;169:106318. [CrossRef] [Google Scholar]
  2. Ferreira CSS, Kašanin-Grubin M, Solomun MK, Sushkova S, Minkina T, Zhao W, et al. Wetlands as nature-based solutions for water management in different environments. Curr Opin Environ Sci Health. 2023 Jun 1;33:100476. [CrossRef] [Google Scholar]
  3. Sarneckis K. Mosquitoes in Constructed Wetlands [Internet]. Adelaide; 2002 Dec [cited 2023 Mar 28]. Available from: https://www.epa.sa.gov.au/files/8581_mosquitoes.pdf [Google Scholar]
  4. WHO. Vector-borne diseases [Internet]. World Health Organization. 2020 [cited 2023 Mar 28]. Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases [Google Scholar]
  5. WHO. Malaria [Internet]. World Health Organization. 2022 [cited 2023 Mar 28]. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria [Google Scholar]
  6. WHO. Dengue and severe dengue [Internet]. World Health Organization. 2023 [cited 2023 Mar 28]. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue [Google Scholar]
  7. Elflein J. Deadliest animals globally by annual number of human deaths [Internet]. STatista. 2022 [cited 2023 Mar 28]. Available from: https://www.statista.com/statistics/448169/deadliest-creatures-in-the-world-by-number-of-human-deaths/ [Google Scholar]
  8. Näslund J, Ahlm C, Islam K, Evander M, Bucht G, Lwande OW. Emerging Mosquito-Borne Viruses Linked to Aedes aegypti and Aedes albopictus: Global Status and Preventive Strategies. Vector-Borne and Zoonotic Diseases [Internet]. 2021 Oct 1 [cited 2024 Jul 31];21(10):731–46. Available from: https://www.liebertpub.com/doi/10.1089/vbz.2020.2762 [CrossRef] [PubMed] [Google Scholar]
  9. Sardelis MR, Turell MJ, Dohm DJ, O’Guinn ML. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis [Internet]. 2001 [cited 2024 Jul 31];7(6):1018–22. Available from: https://pubmed.ncbi.nlm.nih.gov/11747732/ [CrossRef] [PubMed] [Google Scholar]
  10. Turell MJ. Members of the Culex pipiens Complex as Vectors of Viruses1. https://doi.org/102987/8756-971X-284123 [Internet]. 2012 Dec 1 [cited 2024 Jul 31];28(4s):123–6. Available from: https://bioone.org/journals/journal-of-theamerican-mosquito-control-association/volume-28/issue-4s/8756-971X28.4.123/Members-of-the-Culex-pipiens-Complex-as-Vectors-ofViruses1/10.2987/8756-971X-28.4.123.full [Google Scholar]
  11. Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, et al. Japanese encephalitis in Malaysia: An overview and timeline. Acta Trop. 2018 Sep 1;185:219–29. [CrossRef] [PubMed] [Google Scholar]
  12. Dow RP, Coleman PH, Meadows KE, Work TH. ISOLATION OF ST. LOUIS ENCEPHALITIS VIRUSES FROM MOSQUITOES IN THE TAMPA BAY AREA OF FLORIDA DURING THE EPIDEMIC OF 1962. Am J Trop Med Hyg [Internet]. 1964 [cited 2024 Jul 31];13:462–8. Available from: https://pubmed.ncbi.nlm.nih.gov/14159986/ [CrossRef] [PubMed] [Google Scholar]
  13. Xu J, Hillyer JF, Coulibaly B, Sacko M, Dao A, Niaré O, et al. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei. PLoS One [Internet]. 2013 Apr 8 [cited 2024 Jul 31];8(4). Available from: https://pubmed.ncbi.nlm.nih.gov/23593423/ [Google Scholar]
  14. Vezzani D, Mesplet M, Eiras DF, Fontanarrosa MF, Schnittger L. PCR detection of Dirofilaria immitis in Aedes aegypti and Culex pipiens from urban temperate Argentina. Parasitol Res [Internet]. 2011 Apr 12 [cited 2024 Jul 31];108(4):985–9. Available from: https://link.springer.com/article/10.1007/s00436-010-2142-1 [CrossRef] [PubMed] [Google Scholar]
  15. Riahi SM, Yusuf MA, Azari-Hamidian S, Solgi R. Prevalence of dirofilaria immitis in mosquitoes (diptera) Systematic review and meta-analysis. J Nematol. 2021 Feb 1;53:1–13. [CrossRef] [PubMed] [Google Scholar]
  16. Aung ST, Bawm S, Chel HM, Htun LL, Wai SS, Eshita Y, et al. The first molecular confirmation of Culex pipiens complex as potential natural vectors of Dirofilaria immitis in Myanmar. Med Vet Entomol [Internet]. 2023 Sep 1 [cited 2024 Jul 31];37(3):542–9. Available from: https://pubmed.ncbi.nlm.nih.gov/37017293/ [CrossRef] [PubMed] [Google Scholar]
  17. Al-Abd NM, Nor ZM, Ahmed A, Al-Adhroey AH, Mansor M, Kassim M. Lymphatic filariasis in Peninsular Malaysia: A cross-sectional survey of the knowledge, attitudes, and practices of residents. Parasit Vectors [Internet]. 2014 Nov 27 [cited 2024 Jul 31];7(1):1–9. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-014-0545-z [CrossRef] [Google Scholar]
  18. Padhi TR, Das S, Sharma S, Rath S, Rath S, Tripathy D, et al. Ocular parasitoses: A comprehensive review. Surv Ophthalmol. 2017 Mar 1;62(2):161–89. [CrossRef] [PubMed] [Google Scholar]
  19. CDC. Mosquito Control in a Community [Internet]. US Centers for Disease Control and Prevention. 2024 [cited 2024 Jul 31]. Available from: https://www.cdc.gov/mosquitoes/mosquito-control/mosquito-control-in-a-community.html [Google Scholar]
  20. Yadav P, Foster WA, Mitsch WJ, Grewal PS. Factors affecting mosquito populations in created wetlands in urban landscapes. Urban Ecosyst [Internet]. 2012 Jun 6 [cited 2023 Mar 28];15(2):499–511. Available from: https://link.springer.com/article/10.1007/s11252-012-0230-y [CrossRef] [Google Scholar]
  21. Dworrak T V., Sauer FG, Kiel E. Wetland Conservation and Its Effects on Mosquito Populations. Wetlands [Internet]. 2022 Oct 1 [cited 2023 Mar 28];42(7):1–14. Available from: https://link.springer.com/article/10.1007/s13157022-01613-y [CrossRef] [Google Scholar]
  22. Zsemlye JL, Hancock RG, Foster WA. Analysis of a complex vertical copulatorycourtship display in the yellow fever vector Sabethes chloropterus. Med Vet Entomol [Internet]. 2005 Sep [cited 2024 Jul 30];19(3):276–85. Available from: https://pubmed.ncbi.nlm.nih.gov/16134976/ [CrossRef] [PubMed] [Google Scholar]
  23. Yuval B, Bouskila A. Temporal dynamics of mating and predation in mosquito swarms. Oecologia [Internet]. 1993 Mar [cited 2024 Jul 30];95(1):65–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28313313/ [CrossRef] [PubMed] [Google Scholar]
  24. Cator LJ, Arthur BJ, Ponlawat A, Harrington LC. Behavioral observations and sound recordings of free-flight mating swarms of Ae. Aegypti (Diptera: Culicidae) in Thailand. J Med Entomol [Internet]. 2011 Jul [cited 2024 Jul 31];48(4):941–6. Available from: https://pubmed.ncbi.nlm.nih.gov/21845959/ [CrossRef] [Google Scholar]
  25. Mitchell SN, Catteruccia F. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control. Cold Spring Harb Perspect Med [Internet]. 2017 Dec 1 [cited 2024 Jul 31];7(12):14. Available from: /pmc/articles/PMC5710097/ [Google Scholar]
  26. Paris V, Hardy C, Hoffmann AA, Ross PA. How often are male mosquitoes attracted to humans? R Soc Open Sci [Internet]. 2023 Oct 25 [cited 2024 Jul 31];10(10). Available from: https://pubmed.ncbi.nlm.nih.gov/37885984/ [Google Scholar]
  27. Liu S, Zhou J, Kong L, Cai Y, Liu H, Xie Z, et al. Clock genes regulate mating activity rhythms in the vector mosquitoes, Aedes albopictus and Culex quinquefasciatus. PLoS Negl Trop Dis [Internet]. 2022 [cited 2024 Jul 31];16(12):e0010965. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010965 [CrossRef] [Google Scholar]
  28. Fytrou A, Papachristos DP, Milonas PG, Giatropoulos A, Zographos SE, Michaelakis A. Behavioural response of Culex pipiens biotype molestus to oviposition pheromone. J Insect Physiol. 2022 Apr 1;138:104383. [CrossRef] [PubMed] [Google Scholar]
  29. Becker N, Jöst A, Weitzel T. The Culex pipiens Complex in Europe. https://doi.org/102987/8756-971X-284s53 [Internet]. 2012 Dec 1 [cited 2024 Jul 31];28(4s):53–67. Available from: https://bioone.org/journals/journal-of-theamerican-mosquito-control-association/volume-28/issue-4s/8756-971X28.4s.53/The-Culex-pipiens-Complex-in-Europe/10.2987/8756-971X-28.4s.53.full [Google Scholar]
  30. Amini M, Hanafi-Bojd AA, Aghapour AA, Chavshin AR. Larval habitats and species diversity of mosquitoes (Diptera: Culicidae) in West Azerbaijan Province, Northwestern Iran. BMC Ecol. 2020 Dec 1;20(1). [CrossRef] [PubMed] [Google Scholar]
  31. Nikookar SH, Fazeli-Dinan M, Azari-Hamidian S, Mousavinasab SN, Aarabi M, Ziapour SP, et al. Correlation between mosquito larval density and their habitat physicochemical characteristics in Mazandaran Province, northern Iran. PLoS Negl Trop Dis. 2017 Aug 1;11(8). [Google Scholar]
  32. Chatterjee S, Chakraborty A, Sinha SK. Spatial distribution & physicochemical characterization of the breeding habitats of Aedes aegypti in & around Kolkata, West Bengal, India. Indian J Med Res. 2015 Dec 1;142(December):79–86. [Google Scholar]
  33. Duguma D, Walton WE. Effects of nutrients on mosquitoes and an emergent macrophyte, Schoenoplectus maritimus, for use in treatment wetlands. Journal of Vector Ecology [Internet]. 2014 Jun 1 [cited 2023 May 15];39(1):1–13. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1948-7134.2014.12063.x [CrossRef] [Google Scholar]
  34. Flaibani N, Pérez AA, Barbero IM, Burroni NE. Different approaches to characterize artificial breeding sites of Aedes aegypti using generalized linear mixed models. Infect Dis Poverty [Internet]. 2020 Jul 31 [cited 2023 May 10];9(1):1–11. Available from: https://idpjournal.biomedcentral.com/articles/10.1186/s40249-020-00705-3 [CrossRef] [Google Scholar]
  35. Ayllón T, Câmara DCP, Morone FC, da Silva Gonçalves L, de Barros FSM, Brasil P, et al. Dispersion and oviposition of Aedes albopictus in a Brazilian slum: Initial evidence of Asian tiger mosquito domiciliation in urban environments. PLoS One [Internet]. 2018 Apr 1 [cited 2023 May 10];13(4). Available from: https://pubmed.ncbi.nlm.nih.gov/29684029/ [Google Scholar]
  36. Soares APM, Rosário ING, Silva IM. Distribution and preference for oviposition sites of Aedes albopictus (Skuse) in the metropolitan area of Belém, in the Brazilian Amazon. J Vector Ecol [Internet]. 2020 Dec 1 [cited 2023 May 10];45(2):312–20. Available from: https://pubmed.ncbi.nlm.nih.gov/33207062/ [CrossRef] [PubMed] [Google Scholar]
  37. Ndiaye A, Amadou Niang EH, Diène AN, Nourdine MA, Sarr PC, Konaté L, et al. Mapping the breeding sites of Anopheles gambiae s. l. in areas of residual malaria transmission in central western Senegal. PLoS One [Internet]. 2020 Dec 1 [cited 2023 May 10];15(12):e0236607. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236607 [CrossRef] [Google Scholar]
  38. Hamza AM, Rayah EA El. A Qualitative Evidence of the Breeding Sites of Anopheles arabiensis Patton (Diptera: Culicidae) in and Around Kassala Town, Eastern Sudan. Int J Insect Sci [Internet]. 2016 Jan [cited 2023 May 10];8(8):65. Available from: /pmc/articles/PMC4982522/ [Google Scholar]
  39. Liu X, Baimaciwang, Yue Y, Wu H, Pengcuociren, Guo Y, et al. Breeding Site Characteristics and Associated Factors of Culex pipiens Complex in Lhasa, Tibet, P. R. China. Int J Environ Res Public Health [Internet]. 2019 Apr 2 [cited 2023 May 10];16(8):1407. Available from: /pmc/articles/PMC6517927/ [CrossRef] [Google Scholar]
  40. Epstein NR, Saez K, Polat A, Davis SR, Aardema ML. The urban-adapted underground mosquito, Culex molestus, maintains exogenously influenced circadian rhythms despite an absence of photoperiodically induced dormancy. bioRxiv [Internet]. 2020 Oct 3 [cited 2023 May 10];2020.10.02.323824. Available from: https://www.biorxiv.org/content/10.1101/2020.10.02.323824v1 [Google Scholar]
  41. CDC. Mosquito Life Cycles [Internet]. Centers for Disease Control and Prevention. 2022 [cited 2023 May 15]. Available from: https://www.cdc.gov/mosquitoes/about/life-cycles/index.html [Google Scholar]
  42. Couret J, Dotson E, Benedict MQ. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae). PLoS One [Internet]. 2014 Feb 3 [cited 2023 Mar 28];9(2):e87468. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087468 [CrossRef] [Google Scholar]
  43. Liu Z, Zhang Q, Li L, He J, Guo J, Wang Z, et al. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Front Cell Infect Microbiol [Internet]. 2023 Sep 21 [cited 2024 Jul 31];13:1242173. Available from: http://www.who.int/globalchange/ [CrossRef] [Google Scholar]
  44. Villena OC, Ryan SJ, Murdock CC, Johnson LR. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology [Internet]. 2022 Aug 1 [cited 2024 Sep 6];103(8). Available from: /pmc/articles/PMC9357211/ [Google Scholar]
  45. Ryan SJ, Lippi CA, Villena OC, Singh A, Murdock CC, Johnson LR. Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensi. Malar J [Internet]. 2023 Dec 1 [cited 2024 Sep 6];22(1):1–9. Available from: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-023-04531-4 [CrossRef] [Google Scholar]
  46. Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis [Internet]. 2019 Mar 1 [cited 2024 Sep 6];13(3):e0007213. Available from: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007213 [CrossRef] [Google Scholar]
  47. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci U S A [Internet]. 2010 Aug 24 [cited 2024 Jul 31];107(34):15135–9. Available from: /pmc/articles/PMC2930540/ [CrossRef] [PubMed] [Google Scholar]
  48. Craig M, Le Sueur D, Snow B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today [Internet]. 1999 Mar 1 [cited 2024 Jul 31];15(3):105–11. Available from: https://pubmed.ncbi.nlm.nih.gov/10322323/ [CrossRef] [Google Scholar]
  49. Martens WJM, Jetten TH, Focks DA. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim Change [Internet]. 1997 [cited 2024 Jul 31];35(2):145–56. Available from: https://link.springer.com/article/10.1023/A:1005365413932 [CrossRef] [Google Scholar]
  50. Terradas G, Manzano-Alvarez J, Vanalli C, Werling K, Cattadori IM, Rasgon JL. Temperature affects viral kinetics and vectorial capacity of Aedes aegypti mosquitoes co-infected with Mayaro and Dengue viruses. Parasit Vectors [Internet]. 2024 Dec 1 [cited 2024 Jul 31];17(1):1–13. Available from: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-023-061090 [CrossRef] [Google Scholar]
  51. Alto BW, Wiggins K, Eastmond B, Ortiz S, Zirbel K, Lounibos LP. Diurnal Temperature Range and Chikungunya Virus Infection in Invasive Mosquito Vectors. J Med Entomol [Internet]. 2018 Jan 10 [cited 2024 Jul 31];55(1):217–24. Available from: https://dx.doi.org/10.1093/jme/tjx182 [CrossRef] [PubMed] [Google Scholar]
  52. Tesla B, Powers JS, Barnes Y, Lakhani S, Acciani MD, Brindley MA. Temperate Conditions Limit Zika Virus Genome Replication. J Virol [Internet]. 2022 May 25 [cited 2024 Jul 31];96(10). Available from: /pmc/articles/PMC9131854/ [Google Scholar]
  53. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett [Internet]. 2013 Jan 1 [cited 2024 Jul 31];16(1):22–30. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12015 [CrossRef] [PubMed] [Google Scholar]
  54. Tada I. Lymphatic Filariasis and its Control in Japan —The Background of Success—. Trop Med Health [Internet]. 2011 Mar [cited 2024 Jul 31];39(1 Suppl 2):15. Available from: /pmc/articles/PMC3153154/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.