Open Access
Issue |
E3S Web Conf.
Volume 483, 2024
The 3rd International Seminar of Science and Technology (ISST 2023)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 15 | |
Section | Trends in Mathematics and Computer Science for Sustainable Living | |
DOI | https://doi.org/10.1051/e3sconf/202448303020 | |
Published online | 31 January 2024 |
- I. Catrawedarma, Deendarlianto, Indarto, The performance of airlift pump for the solid particles lifting during the transportation of gas-liquid-solid three-phase flow: A comprehensive research review. Proc. IMechE. 235, 606 (2020). https://doi.org/10.1177/0954408920951728 [Google Scholar]
- I. Catrawedarma, Deendarlianto, Indarto, Statistical Characterization of Flow Structure of Air – water Two-phase Flow in Airlift Pump – Bubble Generator System, Int. J. Multiphase Flow, 138, 103596 (2021). https://doi.org/10.1016/j.ijmultiphaseflow.2021.103596 [CrossRef] [Google Scholar]
- P. Enany, O. Shevchenko, C. Drebenstedt, Experimental Evaluation of Airlift Performance for Vertical Pumping of Water in Underground Mines. Mine Water Environ. 40, 970 (2021). https://doi.org/10.1007/s10230-021-00807-w [CrossRef] [PubMed] [Google Scholar]
- D. Hu, Y. Kang, C. Tang, X. Wang, Modeling and analysis of airlift system operating in three-phase flow. China Ocean Eng. 29, 121 (2015). https://doi.org/10.1007/s13344-015-0009-z [CrossRef] [Google Scholar]
- G. Ligus, D. Zając, M. Masiukiewicz, S. Anweiler, A New Method of Selecting the Airlift Pump Optimum Efficiency at Low Submergence Ratios with the Use of Image Analysis, Energies. 12, 4 (2019). https://doi.org/10.3390/en12040735 [CrossRef] [Google Scholar]
- M. S. Akhtar, M. Rajesh, A. Ciji, P. Sharma, B. S. Kamalam, R. S. Patiyal, A. K. Singh, D. Sarma, Photo-thermal manipulations induce captive maturation and spawning in endangered golden mahseer (Tor putitora): A silver-lining in the strangled conservation efforts of decades. Aquaculture. 497, 336 (2018) https://doi.org/10.1016/j.aquaculture.2018.08.003 [CrossRef] [Google Scholar]
- J.-Y. Lim, H.-S. Kim, S.-Y. Park, J.-H. Kim, The design of an ejector type microbubble generator for aeration tanks. Membr. Water Treat. 10, 307 (2019). https://doi.org/10.12989/mwt.2019.10.4.307 [Google Scholar]
- K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi, Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 66, 3172 (2011) https://doi.org/10.1016/j.ces.2011.02.043 [CrossRef] [Google Scholar]
- A. Yoshida, O. Takahashi, Y. Ishii, Y. Sekimoto, Y. Kurata, Water Purification Using the Adsorption Characteristics of Microbubbles. Jpn. J. Appl. Phys. 47, 6574, (2008) https://doi.org/10.1143/JJAP.47.6574 [CrossRef] [Google Scholar]
- T. Bagatur. Evaluation of Plant Growth with Aerated Irrigation Water Using Venturi Pipe Part. Arab J Sci Eng. 39, 2525 (2014) https://doi.org/10.1007/s13369-013-0895-4 [CrossRef] [Google Scholar]
- B. Dahrazma, A. Naghedinia, H. Ghasemian Gorji, S. F. Saghravani, Morphological and Physiological Responses of Cucumis sativus L. to Water with Micro-Nanobubbles. J. Agr. Sci. Tech. 21, 100369 (2019). [Google Scholar]
- M. Fan, D. Tao, R. Honaker, Z. Luo, Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Min. Sci. Technol. (China). 20, 1 (2010) https://doi.org/10.1016/S1674-5264(09)60154-X [CrossRef] [Google Scholar]
- R.-H. Yoon, Microbubble flotation. Min. Eng. 6, 619 (1993). https://doi.org/10.1016/0892-6875(93)90116-5 [CrossRef] [Google Scholar]
- Y. Kaya, A. M. Bacaksiz, H. Bayrak, Z. B. Gönder, I. Vergili, H. Hasar, G. Yilmaz, Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonationanaerobic membrane bioreactor (AnMBR) system. Chem. Eng. J., 322, 293 (2017). https://doi.org/10.1016/j.cej.2017.03.154 [CrossRef] [Google Scholar]
- S. Mitra, N. C. Daltrophe, J. Gilron, A novel eductor-based MBR for the treatment of domestic wastewater. Water Res. 100, 65 (2016). https://doi.org/10.1016/j.watres.2016.04.057 [CrossRef] [PubMed] [Google Scholar]
- A. Hashim, O. B. Yaakob, K. K. Koh, N. Ismail, Y. M. Ahmed, Review of Microbubble Ship Resistance Reduction Methods and the Mechanisms that Affect the Skin Friction on Drag Reduction from 1999 to 2015. Jurnal Teknologi 74, 105 (2015). https://doi.org/10.11113/jt.v74.4650 [Google Scholar]
- A. Agarwal, W. J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84, 1175 (2011). https://doi.org/10.1016/j.chemosphere.2011.05.054 [CrossRef] [PubMed] [Google Scholar]
- Q. Xu, M. Nakajima, S. Ichikawa, N. Nakamura, T. Shiina, A comparative study of microbubble generation by mechanical agitation and sonication. Innov. Food Sci. Emerg. Technol. 9, 489 (2008). https://doi.org/10.1016/j.ifset.2008.03.003 [CrossRef] [Google Scholar]
- Z. Wu, H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, V. S. J. Craig, J. Hu, Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. J. Colloid Interface Sci. 328, 10 (2008). https://doi.org/10.1016/j.jcis.2008.08.064 [CrossRef] [Google Scholar]
- K. Tabei, S. Haruyama, S. Yamaguchi, H. Shirai, F. Takakusagi, “Study of Micro Bubble Generation by a Swirl Jet. J. Environ. Eng. 2, 172 (2007). https://doi.org/10.1299/jee.2.172 [CrossRef] [Google Scholar]
- M. Sadatomi, A. Kawahara, H. Matsuura, S. Shikatani, Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube. Exp. Therm. Fluid Sci. 41, 23 (2012). https://doi.org/10.1016/j.expthermflusci.2012.03.002 [CrossRef] [Google Scholar]
- M. Sadatomi, A. Kawahara, K. Kano, A. Ohtomo, Performance of a new micro-bubble generator with a spherical body in a flowing water tube. Exp. Therm. Fluid Sci. 29, 615 (2005). https://doi.org/10.1016/j.expthermflusci.2004.08.006 [CrossRef] [Google Scholar]
- A. Gordiychuk, M. Svanera, S. Benini, P. Poesio, Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Exp. Therm. Fluid Sci. 70, 51 (2016). https://doi.org/10.1016/j.expthermflusci.2015.08.014 [CrossRef] [Google Scholar]
- L. P. Afisna, W. E. Juwana, I. Indarto, D. Deendarlianto, F. M. Nugroho, Performance of Porous-Venturi Microbubble Generator for Aeration Process. J. Energy Mech. Mater. Manuf. Eng. 2, 73 (2017). https://doi.org/10.22219/jemmme.v2i2.5054 [Google Scholar]
- J. Huang, L. Sun, M. Du, Z. Liang, Z. Mo, J. Tang, G. Xie, An investigation on the performance of a micro-scale Venturi bubble generator. Chem. Eng. J. 386, 120980 (2020). https://doi.org/0.1016/j.cej.2019.02.068 [CrossRef] [Google Scholar]
- A. Basso, F. A. Hamad, P. Ganesan, Effects of the geometrical configuration of air– water mixer on the size and distribution of microbubbles in aeration systems. Asia-Pac. J. Chem. Eng. 13, e2259 (2018). https://doi.org/10.1002/apj.2259 [CrossRef] [Google Scholar]
- S. Uesawa, A. Kaneko, Y. Abe, Measurement of void fraction in dispersed bubbly flow containing micro-bubbles with constant electric current method. Flow Meas. Instrum. 24, 50 (2012). https://doi.org/10.1016/j.flowmeasinst.2012.03.010 [CrossRef] [Google Scholar]
- L. Sun, Z. Mo, L. Zhao, H. Liu, X. Guo, X. Ju, J. Bao, Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR. Ann. Nucl. Energy 109, 69 (2017). https://doi.org/10.1016/j.anucene.2017.05.015 [CrossRef] [Google Scholar]
- L. Zhao, Z. Mo, L. Sun, G. Xie, H. Liu, M. Du, J. Tang, A visualized study of the motion of individual bubbles in a venturi-type bubble generator. Prog. Nucl. Energy 97, 74 (2017). https://doi.org/10.1016/j.pnucene.2017.01.004 [CrossRef] [Google Scholar]
- J. Huang, L. Sun, H. Liu, Z. Mo, J. Tang, G. Xie, M. Du, A review on bubble generation and transportation in Venturi-type bubble generators. Exp. Comput. Multiph. Flow 2, 123 (2020). https://doi.org/10.1007/s42757-019-0049-3 [CrossRef] [Google Scholar]
- J. Huang, L. Sun, M. Du, Z. Mo, L. Zhao, A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel. Theor. Appl. Mech. Lett. 8, 334 (2018). https://doi.org/10.1016/j.taml.2018.05.004 [CrossRef] [Google Scholar]
- J. Li, Y. Song, J. Yin, D. Wang, Investigation on the effect of geometrical parameters on the performance of a venturi type bubble generator. Nucl. Eng. Des. 325, 90 (2017). https://doi.org/10.1016/j.nucengdes.2017.10.006 [CrossRef] [Google Scholar]
- J. Yin, J. Li, H. Li, W. Liu, D. Wang, Experimental study on the bubble generation characteristics for an venturi type bubble generator. Int. J. Heat Mass Transfer 91, 218 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076 [CrossRef] [Google Scholar]
- L. Zhao, L. Sun, Z. Mo, M. Du, J. Huang, J. Bao, J. Tang, G. Xie, Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. Int. J. Multiphase Flow 114, 192 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.02.003 [CrossRef] [Google Scholar]
- J. Huang, L. Sun, Z. Mo, H. Liu, M. Du, J. Tang, J. Bao, A visualized study of bubble breakup in small rectangular Venturi channels. Exp. Comput. Multiph. Flow 1, 177 (2019). https://doi.org/10.1007/s42757-019-0018-x [CrossRef] [Google Scholar]
- C. H. Lee, H. Choi, D.-W. Jerng, D. E. Kim, S. Wongwises, H. S. Ahn, Experimental investigation of microbubble generation in the venturi nozzle. Int. J. Heat Mass Transfer 136, 1127 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.040 [CrossRef] [Google Scholar]
- C. Liu, H. Tanaka, J. Zhang, L. Zhang, J. Yang, X. Huang, N. Kubota, Successful application of Shirasu porous glass (SPG) membrane system for microbubble aeration in a biofilm reactor treating synthetic wastewater. Sep. Purif. Technol. 103, 53 (2013). https://doi.org/10.1016/j.seppur.2012.10.023 [CrossRef] [Google Scholar]
- A. Baylar, F. Ozkan, M. Unsal, Using Venturi Tubes in Two-Phase Aeration Processes, in International Sustainable Water and Wastewater Management Symposium Proceedings, USAS, 26 – 28 October 2010, Türkiye (2010). [Google Scholar]
- B. Wu, A. S. Ribeiro, M. Firouzi, T. E. Rufford, and B. Towler, Use of pressure signal analysis to characterise counter-current two-phase flow regimes in annuli. Chem. Eng. Res. Des. 153, 547 (2020). https://doi.org/10.1016/j.cherd.2019.11.009 [CrossRef] [Google Scholar]
- IGNB. Catrawedarma, Deendarlianto, Indarto, Hydrodynamic behaviors of air– water two-phase flow during the water lifting in a bubble generator type of airlift pump system. Heat Mass Transfer 58, 1005 (2022). https://doi.org/10.1007/s00231-021-03157-z [CrossRef] [Google Scholar]
- L. Zhao, L. Sun, Z. Mo, J. Tang, L. Hu, J. Bao, An investigation on bubble motion in liquid flowing through a rectangular Venturi channel. Exp. Therm. Fluid Sci. 97, 48 (2018). https://doi.org/10.1016/j.expthermflusci.2018.04.009 [CrossRef] [Google Scholar]
- T. Elperin and M. Klochko, Flow regime identification in a two-phase flow using wavelet transform Exp Fluids 32, 674 (2002). https://doi.org/10.1007/s00348-002-0415-x [CrossRef] [Google Scholar]
- G. Matsui, Identification of flow regimes in vertical gas-liquid two-phase flow using differential pressure fluctuations. Int. J. Multiphase Flow 10, 711 (1984). https://doi.org/10.1016/0301-9322(84)90007-7 [CrossRef] [Google Scholar]
- A. Widyatama, O. Dinaryanto, Indarto, and Deendarlianto, The development of image processing technique to study the interfacial behavior of air-water slug twophase flow in horizontal pipes. Flow Meas. Instrum. 59, 168 (2018). https://doi.org/10.1016/j.flowmeasinst.2017.12.015 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.