Open Access
Issue
E3S Web Conf.
Volume 600, 2024
The 6th International Geography Seminar (IGEOS 2023)
Article Number 02009
Number of page(s) 11
Section Geography and Disaster Mitigation Education
DOI https://doi.org/10.1051/e3sconf/202460002009
Published online 29 November 2024
  1. J. Best and S. E. Darby, The pace of human-induced change in large rivers: stresses, resilience, and vulnerability to extreme events, One Earth, 2(6), 510–514. doi: 10.1016/j.oneear.2020.05.021, (2020). [Google Scholar]
  2. L. Tampo, I. Kaboré, E. H. Alhassan, A. Ouéda, L. M. Bawa, G. Djaneye-Boundjou, Benthic macroinvertebrates as ecological indicators: their sensitivity to the water quality and human disturbances in a tropical river, Frontiers in Water, 3, 662765., doi: 10.3389/frwa.2021.662765, (2021). [CrossRef] [Google Scholar]
  3. S. I. Abba, S. J. Hadi, S. S. Sammen, S. Q. Salih, R. A. Abdulkadir, Q. B. Pham, Z. M. Yaseen, Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination, Journal of Hydrology, 587, 124974. doi:10.1016/j.jhydrol.2020.124974, (2020). [CrossRef] [Google Scholar]
  4. T. Kasa, A. L. Bassa, G. T. Negatu, Z. A. Sahile, D. Reddythota, Investigation of Wabe River water fitness for agricultural and industrial purposes, Heliyon, 8(12). doi: 10.1016/j.heliyon.2022.e11865, (2022). [CrossRef] [PubMed] [Google Scholar]
  5. T. Abbasi, and S. A. Abbasi, Water quality indices, Elsevier, doi: 10.1016/C2010-0-69472-7, (2012). [Google Scholar]
  6. N. Al-Ansari, S. AlJawad, N. Adamo, V. K. Sissakian, S. Knutsson, J. Laue, Water quality within the Tigris and Euphrates catchments, Journal of Earth Sciences and Geotechnical Engineering, 8(3), 95–121, (2018). [Google Scholar]
  7. R. R. Utami, G. W. Geerling, I. R. S. Salami, S. Notodarmojo, A. M. J. Ragas, Prioritization of pesticide usage in the Upper Citarum River Basin, Indonesia, Science of The Total Environment, 140130. doi: 10.1016/j.scitotenv.2020.140130, (2020). [CrossRef] [Google Scholar]
  8. D. Rohmat, I. Setiawan, A. R. Affriani, Zonasi Karakteristik Pencemaran Untuk Penyusunan Strategi Dan Pola Aksi Penanganan Sungai Menuju Citarum Harum (Pemetaan Dengan Citra Tegak Resolusi Tinggi), Jurnal Geografi Gea, 20(1), 16–25. doi: 10.17509/gea.v20i1.21719.g11798, (2020). [CrossRef] [Google Scholar]
  9. Peraturan Presiden Nomor 15 Tahun 2018 tentang Percepatan Pengendalian Pencemaran dan Kerusakan Daerah Aliran Sungai Citarum, (2018). [Google Scholar]
  10. M. H. Gholizadeh, A. M. Melesse, L. Reddi, A comprehensive review on water quality parameters estimation using remote sensing techniques, Sensors, 16(8), 1298. doi: 10.3390/s16081298, (2016). [CrossRef] [Google Scholar]
  11. P. Joshi, A. Chauhan, P. Dua, S. Malik, Y. A. Liou, Physicochemical and biological analysis of river Yamuna at Palla station from 2009 to 2019, Scientific Reports, 12(1), 2870. doi: 10.1038/s41598-022-06900-. [Google Scholar]
  12. R. S. Afwa, M. R. Muskananfola, A. Rahman, S. Suryanti, A. Sabdaningsih, Analysis of the Load and Status of Organic Matter Pollution in Beringin River Semarang, Indonesian Journal of Chemical Science, 10(3), 168–178, (2021). [Google Scholar]
  13. E. Yetti, D. Soedharma, S. Hariyadi, Evaluasi kualitas air sungai-sungai di kawasan DAS brantas hulu malang dalam kaitannya dengan tata guna lahan dan aktivitas masyarakat di sekitarnya, Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural Resources and Environmental Management), 1(1), 10–10, (2011). [Google Scholar]
  14. I. M. W. Wijaya and E. S. Soedjono, Physicochemical Characteristic of Municipal Wastewater in Tropical Area: Case Study of Surabaya City, Indonesia, IOP Conf. Series: Earth and Environmental Science 135 (2018). [Google Scholar]
  15. O. Vigiak, B. Grizzetti, A. Udias-Moinelo, M. Zanni, C. Dorati, F. Bouraoui, A. Pistocchi, Predicting biochemical oxygen demand in European freshwater bodies, Science of the Total Environment, 666, 1089–1105. doi: 10.1016%2Fj.scitotenv.2019.02.252, (2019). [CrossRef] [Google Scholar]
  16. A. Kwarciak-Kozłowska and J. Bień, Treatment of dairy wastewater in UASB-UF system, In E3S Web of Conferences (Vol. 44, p. 00087). EDP Sciences. doi: 10.1051/e3sconf/20184400087, (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  17. E. Christian, J. R. Batista, D. Gerrity, Use of COD, TOC, and fluorescence spectroscopy to estimate BOD in wastewater, Water Environment Research, 89(2), 168–177. doi: 10.2175/106143016X14504669768976, (2017). [CrossRef] [PubMed] [Google Scholar]
  18. A. Banerjee and A. K. Ghoshal, Bioremediation of petroleum wastewater by hyperphenol tolerant Bacillus cereus: Preliminary studies with laboratory-scale batch process, Bioengineered, 8(5), 446–450. doi: 10.1080/21655979.2016.1261224, (2017). [CrossRef] [PubMed] [Google Scholar]
  19. Y. Wen, G. Schoups, N. Van De Giesen, Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change, Scientific reports, 7(1), 43289, (2017). [CrossRef] [PubMed] [Google Scholar]
  20. Y. Wen, G. Schoups, N. Van De Giesen, Global impacts of the meat trade on in-stream organic river pollution: the importance of spatially distributed hydrological conditions, Environmental Research Letters, 13(1), 014013, (2018). [CrossRef] [Google Scholar]
  21. O. Malve, S. Tattari, J. Riihimäki, E. Jaakkola, A. Voβ, R. Williams, I. Bärlund, Estimation of diffuse pollution loads in Europe for continental scale modelling of loads and in‐stream river water quality, Hydrological Processes, 26(16), 2385–2394, (2012). [CrossRef] [Google Scholar]
  22. J. A. Aguilar-Torrejón, P. Balderas-Hernández, G. Roa-Morales, C. E. Barrera-Díaz, I. Rodríguez-Torres, T. Torres-Blancas, Relationship, importance, and development of analytical techniques: COD, BOD, and, TOC in water—An overview through time, SN Applied Sciences, 5(4), 118. doi: 10.1007/s42452-023-05318-7, (2023). [CrossRef] [Google Scholar]
  23. R. S. Afwa, M. R. Muskananfola, A. Rahman, S. Suryanti, A. Sabdaningsih, Analysis of the Load and Status of Organic Matter Pollution in Beringin River Semarang, Indonesian Journal of Chemical Science, 10(3), 168–178, (2021). [Google Scholar]
  24. M. Y. Hidayat, R. Fauzi, A. E. Suoth, Efektivitas Multimedia Dalam Biofilter Pada Pengolahan Air Limbah Rumah Tangga, Jurnal Penelitian Pengelolaan Daerah Aliran Sungai, 3, 111–126, (2019). [CrossRef] [Google Scholar]
  25. C. Wei, H. Wu, Q. Kong, J. Wei, C. Feng, G. Qiu, … F. Li, Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization, Journal of Environmental Management, 246, 324–333. doi: 10.1016/j.jenvman.2019.06.001, (2019). [CrossRef] [PubMed] [Google Scholar]
  26. A. D. Sinha, H. Zhao, J. Chen, S. M. Mugo, Determination of Chemical Oxygen Demand: An Analytical Approach. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, doi: 10.1016/b978-0-12-409547-2.14517-2, (2018). [Google Scholar]
  27. H. Patel and R. T. Vashi, Characterization of Textile Wastewater. Characterization and Treatment of Textile Wastewater, 21–71. doi: 10.1016/b978-0-12-802326-6.00002-2, (2015). [CrossRef] [Google Scholar]
  28. D. R. Khanna, R. Bhutiani, K. S. Chandra, A recursive approach for numerically identified DO–BOD interaction and kinetic formulation for water quality probability, International Journal of Environment and Waste Management, 10(4), 391–399. doi: 10.1504/IJEWM.2012.049843, (2012). [CrossRef] [Google Scholar]
  29. L. Tang, X. Pan, J. Feng, X. Pu, R. Liang, R. Li, K. Li, Experimental investigation on the relationship between COD degradation and hydrodynamic conditions in urban rivers, International Journal of Environmental Research and Public Health, 16(18), 3447. doi: https://doi.org/10.3390%2Fijerph16183447, (2019). [CrossRef] [PubMed] [Google Scholar]
  30. B. S. R. V. Prasad, P. D. N. Srinivasu, P. S. Varma, A. V. Raman, S. Ray, Dynamics of dissolved oxygen in relation to saturation and health of an aquatic body: A case for Chilka Lagoon, India, Journal of Ecosystems, 2014. doi: 10.1155/2014/526245, (2014). [Google Scholar]
  31. H. Chang, Spatial and temporal variations of water quality in the Han River and its tributaries, Seoul, Korea, 1993-2002, Water Air Soil Pollut. 161, 267–284, (2005). [CrossRef] [Google Scholar]
  32. P. R. Kannel, S. Lee, Y. S. Lee, S. R. Kanel, G. J. Pelletier, Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal, Ecological modelling, 202(3-4), 503–517. doi: 10.1016/j.ecolmodel.2006.12.033, (2007). [CrossRef] [Google Scholar]
  33. K. Ravindra and A. Kaushik, Seasonal variations in physico-chemical characteristics of River Yamuna in Haryana and its ecological best-designated use, Journal of Environmental Monitoring, 5(3), 419–426. doi: 10.1039/b301723k, (2003). [CrossRef] [PubMed] [Google Scholar]
  34. K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, ... T. Xiao, Removal of fluoride from industrial wastewater by using different adsorbents: A review, Science of the Total Environment, 773, 145535, (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.