Open Access
Issue
E3S Web Conf.
Volume 600, 2024
The 6th International Geography Seminar (IGEOS 2023)
Article Number 06003
Number of page(s) 12
Section Spatial Planning, Urban and Rural Environmental Geography
DOI https://doi.org/10.1051/e3sconf/202460006003
Published online 29 November 2024
  1. W Sirko, et al., Continental-Scale Building Detection from High Resolution Satellite Imagery arXiv, (2021). https://arxiv.org/abs/2107.12283 [Google Scholar]
  2. X Shen, D Wang, K Mao, E Anagnostou, and Y Hong, Inundation Extent Mapping by Synthetic Aperture Radar: A Review Remote Sens. 11 879, (2019). https://doi.org/10.3390/rs11070879 [CrossRef] [Google Scholar]
  3. S L Ullo, C Zarro, K Wojtowicz, G Meoli, and M Focareta, LiDAR-Based System and Optical VHR Data for Building Detection and Mapping Sensors 20 1285, (2020). https://doi.org/10.3390/s20051285 [CrossRef] [PubMed] [Google Scholar]
  4. X Hou, Y Bai, Y Li, C Shang, and Q Shen, High-resolution triplet network with dynamic multiscale feature for change detection on satellite images ISPRS J. Photogramm. Remote Sens. 177 103–115, (2021). https://doi.org/10.1016/j.isprsjprs.2021.05.001 [CrossRef] [Google Scholar]
  5. U C Benz, P Hofmann, G Willhauck, I Lingenfelder, and M Heynen, Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information ISPRS J. Photogramm. Remote Sens. 58 239–258, (2004). https://doi.org/10.1016/j.isprsjprs.2003.10.002 [CrossRef] [Google Scholar]
  6. F Lafarge, X Descombes, J Zerubia, and M P-Deseilligny, Automatic building extraction from DEMs using an object approach and application to the 3D-city modelling ISPRS J. Photogramm. Remote Sens. 63 365–381, (2008). https://doi.org/10.1016/j.isprsjprs.2007.09.003 [CrossRef] [Google Scholar]
  7. F H Nahhas, H Z M Shafri, M I Sameen, B Pradhan, and S Mansor, Deep Learning Approach for Building Detection Using LiDAR–Orthophoto Fusion Journal of Sensors 2018, (2018). https://doi.org/10.1155/2018/7212307 [CrossRef] [Google Scholar]
  8. D Gonzalez, et al., Automatic detection of building typology using deep learning methods on street level images Building and Environment, 177, (2020). https://doi.org/10.1016/j.buildenv.2020.106805 [CrossRef] [Google Scholar]
  9. F Yamazaki, H Mitomi, M Matsuoka, and K Honda, Inventory development for natural and built environments-remote sensing technologies for inventory development and risk assessment-characteristics of satellite images in bangkok, thailand, NIED, Miki, Hyogo, Japan, Tech. Rep. on The Development of Earthquake and Tsunami Mitigation Technologies and their Integration for the Asia-Pacific Region, Tech. Rep., (2000). [Google Scholar]
  10. A C Caputo and A Vigna, Numerical simulation of seismic risk and loss propagation effects in process plants: An oil refinery case study ASME Pressure Vessels and Piping Conference, pp. V008T08A024–V008T08A024, (2017). https://doi.org/10.1115/PVP2017-65465 [Google Scholar]
  11. M Pittore and M Wieland, Toward a rapid probabilistic seismic vulnerability assessment using satellite and ground–based remote sensing Nat. Hazardz 68 115–145, (2013). [CrossRef] [Google Scholar]
  12. G C Iannelli and F D’Acqua, Extensive exposure mapping in urban areas through deep analysis of street-level pictures for floor count determination Urban Sci. 1 16, (2017). https://doi.org/10.3390/urbansci1020016 [CrossRef] [Google Scholar]
  13. M Andriluka, L Pishchulin, P Gehler, and B Schiele, 2D human pose estimation: New benchmark and state of the art analysis 2014 IEEE International Conference on Computer Vision (CVPR), (2014). [Google Scholar]
  14. K He, G Gkioxari, P Dollar, and R Girshick, IEEE International Conference on Computer Vision, (2017). [Google Scholar]
  15. A Bimanjaya, H H Handayani, and R F Rachmadi, Extraction of Road Network in Urban Area from Orthophoto Using Deep Learning and Douglas-Peucker Post-Processing Algorithm IOP Conf. Ser.: Earth Environ. Sci. 1127 012047, (2023). [CrossRef] [Google Scholar]
  16. M A Raihan, R F Rachmadi, A Bimanjaya, and H H Handayani, Classification Analysis Of Industrial Buildings Using Orthophoto And Ndsm Data With Deep Learning Approach (Case Study: Kali Rungkut Village, Surabaya) Institut Teknologi Sepuluh November, (2023) [Google Scholar]
  17. S Su, K Nakano, and K Wakabayashi, Building Detection From Aerial Lidar Point Cloud Using Deep Learning International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS Archives, 43(B2-2022) 291–296, (2022). https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-291-2022. [Google Scholar]
  18. S Ren, K He, R Girshick, and J Sun, Faster R-CNN: Towards real-time object detection with region proposal networks NIPS, (2015). http://arxiv.org/abs/1506.01497 [Google Scholar]
  19. G Gröger, and L Plümer, Topology of surfaces modelling bridges and tunnels in 3D-GIS Comput., Environ. and Urban Syst. 35 208–216, (2011). https://doi.org/10.1016/j.compenvurbsys.2010.10.001 [CrossRef] [Google Scholar]
  20. Q Han, Q Yin, X Zheng, and Z Chen, Remote sensing image building detection method based on Mask R-CNN Complex Intell. Syst. 8 1847–1855, (2022). https://doi.org/10.1007/s40747-021-00322-z. [CrossRef] [Google Scholar]
  21. Doll, P., Girshick, R., and Ai, F, Mask R-CNN, (2017). [Google Scholar]
  22. R Girshick, Fast R-CNN Proceedings of the IEEE International Conference on Computer Vision 1440–1448, (2015). https://doi.org/10.1109/ICCV.2015.169. [Google Scholar]
  23. K He, G Gkioxari, P Dollár and R Girshick, Mask R-CNN, IEEE International Conference on Computer Vision (ICCV), 2980–2988, (2017). https://doi:10.1109/ICCV.2017.322. [Google Scholar]
  24. B Koonce, Convolutional Neural Networks with Swift for Tensorflow Apress, (2021). https://doi.org/10.1007/978-1-4842-6168-2 [Google Scholar]
  25. E Rezende, G Ruppert, T Carvalho, F Ramos, and P D Geus, Malicious Software Classification Using Transfer Learning of ResNet-50 Deep Neural Network, 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, pp. 1011–1014, (2017). doi: 10.1109/ICMLA.2017.00-1. [Google Scholar]
  26. K He, X Zhang, S Ren and J Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770–778, (2016). doi: 10.1109/CVPR.2016.90. [Google Scholar]
  27. A E Maxwell, T A Warner, and L A Guillén, Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—part 2: Recommendations and best practices Remote Sens. 13 2591, (2021). https://doi.org/10.3390/rs13132591. [CrossRef] [Google Scholar]
  28. A. E. Maxwell, T. A. Warner, & L.A. Guillén, Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—part 1: Literature review Remote Sens. 13 2591, (2021). https://doi.org/10.3390/rs13132450. [CrossRef] [Google Scholar]
  29. A Tharwat, Classification assessment methods Appl. Comput. Inform. 17 168–192, (2021). [CrossRef] [Google Scholar]
  30. A Singh, H Kalke, M Loewen, and N Ray, River Ice Segmentation with Deep Learning. IEEE Trans. Geosci. Remote Sens. 58 7570–7579, (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.