Open Access
Issue
E3S Web Conf.
Volume 484, 2024
The 4th Faculty of Industrial Technology International Congress: Development of Multidisciplinary Science and Engineering for Enhancing Innovation and Reputation (FoITIC 2023)
Article Number 01008
Number of page(s) 10
Section Manufacturing, Process, and Business Advancement
DOI https://doi.org/10.1051/e3sconf/202448401008
Published online 07 February 2024
  1. Berlin´ska, J., Przybylski, B., 2021. Scheduling for gathering multitype data with local computations. Eur. J. Oper. Res. 294 (2), 453–459. https://doi.org/10.1016/j.ejor.2021.01.043. [CrossRef] [Google Scholar]
  2. Febriana, W. 2016. Penjadwalan Produksi Lower Pressure Outer Casing Di PT SICF Menggunakan Metode Algoritma Genetika. Banten: Universitas Sultan Ageng Tirtayasa. http://eprints.untirta.ac.id/id/eprint/3984. [Google Scholar]
  3. Lee, T.S., Loong, Y.T., 2019. A review of scheduling problem and resolution methods in flexible flow shop. Int. J. Ind. Eng. Comput. 10, 67–88. https://doi.org/10.5267/j.ijiec.2018.4.001. [Google Scholar]
  4. Greiner, D., Periaux, J., Quagliarella, D., Magalhaes-Mendes, J., Galván, B., 2018. Evolutionary algorithms and metaheuristics: applications in engineering design and optimization. Math. Probl. Eng. 2018, 1–4. https://doi.org/10.1155/2018/2793762. [CrossRef] [Google Scholar]
  5. Katoch, S., Chauhan, S.S., Kumar, V., 2021. A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80 (5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6. [CrossRef] [PubMed] [Google Scholar]
  6. Yu, C., Semeraro, Q., Matta, A., 2018. A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Comput. Oper. Res. 100, 211–229. https://doi.org/10.1016/j.cor.2018.07.025. [CrossRef] [Google Scholar]
  7. Bisht, V.S., Joshi, N., Jethi, G.S., Bhakuni, A.S., 2021. A review on genetic algorithm and its application in power system engineering. Studies in Computational Intelligence., 107–130 https://doi.org/10.1007/978-981-15-7571-6_5. [Google Scholar]
  8. Keskin, K., Engin, O., 2021. A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria. SN Appl. Sci. 3, 628. https://doi.org/10.1007/s42452-021-04615-3. [CrossRef] [Google Scholar]
  9. Piroozfard, H., Wong, K.Y., Hassan, A., 2016. A hybrid genetic algorithm with a knowledge-based operator for solving the job shop scheduling problems. J. Optim. 2016, 1–13. https://doi.org/10.1155/2016/7319036. [Google Scholar]
  10. Werner, Frank., 2013 “A survey of genetic algorithms for shop scheduling problems.” P. Siarry: Heuristics: Theory and Applications, Nova Science Publishers: 161-222. [Google Scholar]
  11. Baker., 1974. Introduction To Sequencing and Scheduling. New York: John Wiley and Sons [Google Scholar]
  12. Ruiz, R. and Maroto, C. 2005. A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine ligibility, European Journal of Operational Research 169(3): >781–800. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.