Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 03001
Number of page(s) 15
Section Environment Conservation, Restoration, Emergency and Rehabilitation
DOI https://doi.org/10.1051/e3sconf/202448503001
Published online 02 February 2024
  1. United Nations Environment Programme (UNEP), The Closing Window. United Nations Environment Programme (UNEP), (2022). [Google Scholar]
  2. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2021 – The Physical Science Basis, Intergovernmental Panel on Climate Change (IPCC), (2021). [Google Scholar]
  3. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2022 – Impacts, Adaptation and Vulnerability, Intergovernmental Panel on Climate Change (IPCC), (2022). [Google Scholar]
  4. M. A. H. Khan et al., Investigation of Biofuel as a Potential Renewable Energy Source, Atmosphere (Basel)., vol. 12, no. 10, (2021). [Google Scholar]
  5. C. R. A. Lima, G. R. de Melo, B. Stosic, and T. Stosic, Cross-Correlations between Brazilian Biofuel and Food Market: Ethanol versus Sugar, Phys. A Stat. Mech. its Appl., vol. 513, pp. 687–693, (2019). [CrossRef] [Google Scholar]
  6. T. Tanaka, J. Guo, and X. Wang, Price Interconnection of Fuel and Food Markets: Evidence from Biodiesel in the United States, GCB Bioenergy, vol. 15, no. 7, pp. 886–899, (2023). [CrossRef] [Google Scholar]
  7. Y. Subramaniam, T. A. Masron, and N. H. N. Azman, The Impact of Biofuels on Food Security, International Economics, vol. 160. pp. 72–83, (2019). [CrossRef] [Google Scholar]
  8. M. Boly and A. Sanou, Biofuels and Food Security: Evidence from Indonesia and Mexico, Energy Policy, vol. 163, no. March, p. 112834, (2022). [CrossRef] [Google Scholar]
  9. International Energy Agency (IEA), World Energy Outlook 2022, International Energy Agency (IEA), (2022). [Google Scholar]
  10. J. Guo and T. Tanaka, Energy Security versus Food Security: An Analysis of Fuel Ethanol- Related Markets Using the Spillover Index and Partial Wavelet Coherence Approaches, Energy Econ., vol. 112, no. September 2021, p. 106142, (2022). [CrossRef] [Google Scholar]
  11. National Energy Council (NEC), Indonesia Energy Outlook 2022, Secretary General of the National Energy Council, Jakarta, (2022). [Google Scholar]
  12. A. V. F. C. Bobrov, D. H. Lorence, M. S. Romanov, and E. S. Romanov, Fruit Development and Pericarp Structure in Nypa fruticans Wurmb (Arecaceae): A Comparison with Other Palms, Int. J. Plant Sci., vol. 173, no. 7, pp. 751–766, (2012). [CrossRef] [Google Scholar]
  13. T. K. Lim, Edible Medicinal and non-Medicinal Plants, Edible Med. Non-Medicinal Plants, vol. 1, pp. 1–738, (2012). [Google Scholar]
  14. K. Tsuji et al., Genetic Diversity and Geographical Differentiation of Nipa (Nypa fruticans Wurmb.) Populations in Peninsular Malaysia Based on AFLP, Japan Agric. Res. Q., vol. 50, no. 1, pp. 49–56, (2016). [CrossRef] [Google Scholar]
  15. J. A. Mantiquilla et al., Deep Structured Populations of Geographically Isolated Nipa (Nypa fruticans Wurmb.) in the Indo-West Pacific Revealed Using Microsatellite Markers, Front. Plant Sci., vol. 13, no. October, pp. 1–18, (2022). [CrossRef] [Google Scholar]
  16. T. M. Ibrahim, E. Julianti, T. Supriana, and Delvian, Potential Analysis of Nipa Palm (Nypa Fruticans) in Singkil, IOP Conf. Ser. Earth Environ. Sci., vol. 1115, no. 1, (2022). [Google Scholar]
  17. V. N. Osabor, G. E. Egbung, and P. C. Okafor, Chemical Profile of Nypa Fruiticans from Cross River, Pakistan J. Nutr., vol. 7, no. 1, pp. 146–150, (2008). [Google Scholar]
  18. A. Bayata, Review on Nutritional Value of Cassava for Use as a Staple Food, Sci. J. Anal. Chem., vol. 7, no. 4, pp. 83–91, (2019). [CrossRef] [Google Scholar]
  19. P. Tamunaidu and S. Saka, Comparative Study of Nutrient Supplements and Natural Inorganic Components in Ethanolic Fermentation of Nipa Sap Pramila, J. Japan Inst. Energy, vol. 65, no. 2, pp. 122–125, (2013). [Google Scholar]
  20. A. G. Capodaglio and S. Bolognesi, Ecofuel Feedstocks and Their Prospects, in Advances in Eco-Fuels for a Sustainable Environment, Elsevier Ltd., 2019, pp. 15–51. [CrossRef] [Google Scholar]
  21. I. W. Hidayat, Economic Valuation of Nipa Palm (Nypa fruticans Wurmb.) Sap as Bioethanol Material, IOP Conf. Ser. Earth Environ. Sci., vol. 166, no. 1, (2018). [Google Scholar]
  22. Ulyarti, Nazarudin, and D. W. Sari, The Study of Functional Properties of Nypa Fruticans Flour, AIP Conf. Proc., vol. 1823, no. March, (2017). [Google Scholar]
  23. H. Hermanto, R. C. Mukti, and A. D. Pangawikan, Nipah (Nypa fruticans Wurmb.) Fruit as a Potential Natural Antioxidant Source, IOP Conf. Ser. Earth Environ. Sci., vol. 443, no. 1, (2020). [Google Scholar]
  24. R. Nofiani, J. Romengga, and T. A. Zaharah, Characterization of Old Nipah (Nypa fruticans Wurmb) Fruit Endosperm Flour and Its Application for Gluten-Free Cookies, agriTECH, vol. 41, no. 4, p. 354, (2021). [CrossRef] [Google Scholar]
  25. Sulfahri, R. Wardhani, F. A. Makatita, and I. W. Iskandar, Utilization of Nypa fruit in Alzheimer’s Disease: An in Silico Approach, J. Phys. Conf. Ser., vol. 1341, no. 2, (2019). [Google Scholar]
  26. F. K. Muzaki, D. Saptarini, N. D. Kuswytasari, and A. Suliestyono, Menjelajah Mangrove Surabaya. Surabaya: Pusat Studi Kelautan LPPM ITS, (2012). [Google Scholar]
  27. D. Mueller-Dombois and E. Heinz, Ekologi Vegetasi: Tujuan dan Metode, 1st ed. Jakarta: LIPI Press, (2016). [Google Scholar]
  28. I. W. Hidayat, Natural Production Potency of Nipa (Nypa fruticans) sap as Production Commodity for Bioethanol, Pros. Semin. Nas. Masy. Biodiversitas Indones., no. January, (2015). [Google Scholar]
  29. Badan Standarisasi Nasional (BSN), SNI 7717 :2011 Survei dan Pemetaan Mangrove. Jakarta: Badan Standarisasi Nasional, (2011). [Google Scholar]
  30. International Standard Organization (ISO), ISO 7218:2007 Microbiology of Food and Animal Feeding Stuffs — General Requirements and Guidance for Microbiological Examinations. Geneva: International Standard Organization (ISO), (2007). [Google Scholar]
  31. Badan Standarisasi Nasional (BSN), SNI 01-2891-1992 Cara Uji Makanan dan Minuman. Jakarta: Badan Standarisasi Nasional, (1992). [Google Scholar]
  32. N. Matsui, Y. Okimori, F. Takahashi, K. Matsumura, and N. Bamroongrugsa, Nipa (Nypa fruticans Wurmb) Sap Collection in Southern Thailand I. Sap Production and Farm Management, Environ. Nat. Resour. Res., vol. 4, no. 4, pp. 75–88, (2014). [Google Scholar]
  33. A. E. A. Päivöke, Tapping Practices and SAP Yields of the Nipa Palm (Nypa Fruticans) in Papua New Guinea, Agric. Ecosyst. Environ., vol. 13, no. 1, pp. 59–72, (1985). [CrossRef] [Google Scholar]
  34. D. Van Nguyen, Harifara, Rabemanolontsoa, and S. Saka, Sap from Various Palms as a Renewable Energy Source for Bioethanol Production, Chem. Ind. Chem. Eng. Q., vol. 22, no. 4, pp. 355–373, (2016). [CrossRef] [Google Scholar]
  35. N. M. Heriyanto, E. Subiandono, and E. Karlina, Potensi dan Sebaran Nipah (Nypa fruticans (Thunb.) Wurmb) sebagai Sumberdaya Pangan, J. Penelit. Hutan dan Konserv. Alam, vol. 8, no. 4, pp. 327–335, (2011). [CrossRef] [Google Scholar]
  36. B. Irawan, J. Khabibi, and A. Agustina, The Potential of Nipah (Nypa Fruticans Wurmb) as Bioenergy Resources, 1st Int. Conf. Green Dev. – Univ. Jambi - 2016, pp. 83–86, (2016). [Google Scholar]
  37. Kementerian Pertanian, Laporan Tahunan 2021. Jakarta: Kementerian Pertanian, (2022). [Google Scholar]
  38. Badan Pusat Statistik (BPS), Statistik Tebu Indonesia 2021. Jakarta: Badan Pusat Statistik Indonesia, (2022). [Google Scholar]
  39. Ministry of Energy and Mineral Resources, Handbook of Energy and Economic Statistics of Indonesia (HEESI) 2022. Jakarta: Ministry of Energy and Mineral Resources, 2023. [Google Scholar]
  40. E. Subiandono, N. M. Heriyanto, and E. Karlina, Potensi Nipah (Nypa fruticans (Thunb.) Wurmb.) sebagai Sumber Pangan dari Hutan Mangrove, Bul. Plasma Nutfah, no. 5, pp. 54–60, (2011). [Google Scholar]
  41. P. Chau Sum, H. Eng Khoo, and A. Azlan, Comparison of Nutrient Composition of Ripe and Unripe Fruits of Nypa fruticans, Fruits, vol. 68, no. 6, pp. 491–498, (2013). [CrossRef] [EDP Sciences] [Google Scholar]
  42. R. T. Setiawati and H. S. Titah, Strategi Pengelolaan Mangrove di Ekowisata Mangrove Wonorejo Surabaya. Surabaya: Program Magister Bidang Keahlian Teknik Lingkungan, Institut Teknologi Sepuluh Nopember (ITS), (2019). [Google Scholar]
  43. J. N. Schaduw, Distribusi dan Karakteristik Kualitas Perairan Ekosistem Mangrove Pulau Kecil Taman Nasional Bunaken, Maj. Geogr. Indones., vol. 32, no. 1, p. 40, (2018). [CrossRef] [Google Scholar]
  44. Kementerian LHK (KLHK), Rekalkulasi Penutupan Lahan Indonesia Tahun 2018. Jakarta: Direktorat Inventarisasi dan Pemantauan Sumber Daya Hutan. Jakarta., (2019). [Google Scholar]
  45. D. Van Nguyen, P. Sethapokin, H. Rabemanolontsoa, E. Minami, H. Kawamoto, and S. Saka, Efficient Production of Acetic Acid from Nipa (Nypa fruticans) Sap by Moorella thermoacetica (f. Clostridium thermoaceticum), Int. J. Green Technol., no. February 2017, (2016). [Google Scholar]
  46. P. Tamunaidu and S. Saka, On-Site Sugar Analysis and Pre-treatment of Nipa Saps, Green Energy Technol., vol. 108, (2011). [Google Scholar]
  47. N. El Bassam, Handbook of Bioenergy Crops - A Complete Reference to Species, Development and Applications, 1st ed. London: Earthscan, (2010). [CrossRef] [Google Scholar]
  48. B. A. Saville, W. M. Griffin, and H. L. MacLean, Ethanol Production Technologies in the US : Status and Future Developments. Elsevier Inc., (2016). [Google Scholar]
  49. R. C. Ray, K. B. Uppuluri, C. Trilokesh, and C. Lareo, Sweet Sorghum for Bioethanol Production : Scope, Technology, and Economics. Elsevier Inc., (2019). [Google Scholar]
  50. M. Johnston, J. A. Foley, T. Holloway, C. Kucharik, and C. Monfreda, Resetting Global Expectations from Agricultural Biofuels, Environ. Res. Lett., vol. 4, no. 1, (2009). [Google Scholar]
  51. D. Khatiwada, B. K. Venkata, S. Silveira, and F. X. Johnson, Energy and GHG balances of Ethanol Production from Cane Molasses in Indonesia, Appl. Energy, vol. 164, pp. 756–768, (2016). [CrossRef] [Google Scholar]
  52. Kementerian PPN/Bapenas, Kajian Pengembangan Bahan Bakar Nabati (BBN), Jakarta, (2015). [Google Scholar]
  53. A. H. Hirani, N. Javed, M. Asif, S. K. Basu, and A. Kumar, A Review on First- and Second- Generation Biofuel Productions, Biofuels Greenh. Gas Mitig. Glob. Warm. Next Gener. Biofuels Role Biotechnol., pp. 141–154, (2018). [Google Scholar]
  54. International Energy Agency (IEA), Renewable Energy Market Update Outlook for 2021 and 2022, International Energy Agency (IEA), (2022). [Google Scholar]
  55. FAOSTAT, Crops and Livestock Products, Food and Agriculture Organization of The United Nations, (2023). [Google Scholar]
  56. Y. Widodo, S. Wahyuningsih, and J. Newby, Fuelling Cassava Development to Meet the Greater Demand for Food and Bio-fuel in Indonesia, Energy Procedia, vol. 65, pp. 386–394, (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.