Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 03005
Number of page(s) 12
Section Environment Conservation, Restoration, Emergency and Rehabilitation
DOI https://doi.org/10.1051/e3sconf/202448503005
Published online 02 February 2024
  1. D. Apriyanto and R. Harini, ‘Dampak Kegiatan Pertambangan Batubara Terhadap Kondisi Sosial-Ekonomi Masyarakat’, Jurnal Bumi Indonesia, (2012). [Google Scholar]
  2. D. T. Suryaningtyas and R. S. Gautama, ‘Acid Mine Drainage Treatment of Overburden for the Removal of Cation Metals’, Mine Water and the Environment, Proceedings, pp. 341–344, (2008). [Google Scholar]
  3. M. S. Abfertiawan, Y. Palinggi, M. Handajani, K. Pranoto, and A. Atmaja, ‘Evaluation of Non-Acid-Forming material layering for the prevention of acid mine drainage of pyrite and jarosite’, Heliyon, vol. 6, no. 11, p. e05590, (2020), doi: 10.1016/j.heliyon.2020.e05590. [CrossRef] [PubMed] [Google Scholar]
  4. I. Noor, Y. F. Arifin, B. J. Priatmadi, and A. R. Saidy, ‘Development of the Swampy forest system for passive treatment of acid mine drainage during post mining land reclamation : A new concept review’, Ecology, Environment & Conservation - EM International, vol. 26, no. 2, pp. 901–909, (2020). [Google Scholar]
  5. A. RoyChowdhury, D. Sarkar, and R. Datta, ‘Remediation of Acid Mine Drainage-Impacted Water’, Current Pollution Reports. (2015). doi: 10.1007/s40726-015-0011-3. [Google Scholar]
  6. J. Taylor, S. Pape, and N. Murphy, ‘A Summary of Passive and Active Treatment Technologies for Acid and Metalliferous Drainage (AMD)’, Proceedings of the 5th Australian Workshop on Acid Drainage, (2005). [Google Scholar]
  7. N. I. Said, ‘Teknologi Pengolahan Air Asam Tambang Batubara “Alternatif Pemilihan Teknologi”‘, JAI, vol. 7, no. 2, (2014). [Google Scholar]
  8. M. L. Blanchette and M. A. Lund, ‘Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities’, Curr Opin Environ Sustain, vol. 23, pp. 28–34, (2016), doi: 10.1016/j.cosust.2016.11.012. [CrossRef] [Google Scholar]
  9. E. P. Izuangbe, S. Ogbeide, and O. A. Olafuyi, ‘A Comparative Study of the Performance of Water Hyacinth (Eichhornia Crassipes) and Water Lettuce (Pistias Stratiotes) in the Remediation of Produced Water’, Journal of Energy Technologies and Policy, vol. 5, no. 3, pp. 1–9, (2015). [Google Scholar]
  10. I. Noor, Y. F. Arifin, B. J. Priatmadi, and A. R. Saidy, ‘Laboratory simulation of the swampy forest system for the passive treatment of acid mine drainage in coal mine reclamation areas’, Sci Rep, vol. 13, no. 1, pp. 1–10, (2023), doi: 10.1038/s41598-023-32990-x. [CrossRef] [PubMed] [Google Scholar]
  11. I. Noor, Y. F. Arifin, B. J. Priatmadi, A. R. Saidy, and I. Mansur, ‘Role of the Tree Species Selected in Developing Swampy Forest System for Passive Treatment of Acid Mine Drainage’, Technium Sustainability, vol. 2, no. 1, pp. 46–53, (2022), doi: https://doi.org/10.47577/sustainability.v2i1.5889. [CrossRef] [Google Scholar]
  12. W. S. Bargawa, A. P. A. Sucahyo, and H. F. Andiani, ‘Design of coal mine drainage system’, E3S Web of Conferences, vol. 76, pp. 1–6, (2019), doi: 10.1051/e3sconf/20197604006. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. N. Jayalath, L. M. Mosley, R. W. Fitzpatrick, and P. Marschner, ‘Addition of organic matter influences pH changes in reduced and oxidised acid sulfate soils’, Geoderma, (2016), doi: 10.1016/j.geoderma.2015.08.012. [Google Scholar]
  14. G. M. Naja and B. Volesky, ‘Constructed Wetlands for Water Treatment’, in Comprehensive Biotechnology, Second Edition, (2011). doi: 10.1016/B978-0-08-088504-9.00249-X. [Google Scholar]
  15. T. I. Ojonimi, I. C. Okeme, T. Phiri-Chanda, and E. G. Ameh, ‘Acid mine drainage (AMD) contamination in coal mines and the need for extensive prediction and remediation: a review’, Journal of Degraded and Mining Lands Management, vol. 9, no. 1, pp. 3129–3136, (2021), doi: 10.15243/jdmlm.2021.091.3129. [CrossRef] [Google Scholar]
  16. M. Sojka, ‘Trace Elements in Sediments of Rivers Affected by Brown Coal’, (2022). [Google Scholar]
  17. I. Ňancucheo and D. B. Johnson, ‘Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria’, Microb Biotechnol, (2012), doi: 10.1111/j.1751-7915.2011.00285.x. [Google Scholar]
  18. D. B. Johnson and K. B. Hallberg, ‘Acid mine drainage remediation options: A review’, Science of the Total Environment, vol. 338, pp. 3–14, (2005), doi: 10.1016/j.scitotenv.2004.09.002. [CrossRef] [Google Scholar]
  19. J. Shamshuddin, S. Muhrizal, I. Fauziah, and E. Van Ranst, ‘A Laboratory Study of Pyrite Oxidation in Acid Sulfate Soils’, Commun Soil Sci Plant Anal, vol. 35, no. 1–2, pp. 117–129, (2004), doi: 10.1081/CSS-120027638. [CrossRef] [Google Scholar]
  20. J. A. Álvarez and E. Bécares, ‘Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland’, Ecol Eng, vol. 28, no. 2, pp. 99–105, (2006), doi: 10.1016/j.ecoleng.2006.05.001. [CrossRef] [Google Scholar]
  21. O. Gibert, J. De Pablo, J. Luis Cortina, and C. Ayora, ‘Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage’, Water Res, (2004), doi: 10.1016/j.watres.2004.06.023. [Google Scholar]
  22. N. Mohammad, M. Z. Alam, and N. A. Kabashi, ‘Development of composting process of oil palm industrial wastes by multi-enzymatic fungal system’, J Mater Cycles Waste Manag, (2013), doi: 10.1007/s10163-013-0125-x. [Google Scholar]
  23. A. Zubair, N. O. Abdullah, R. Ibrahim, and A. R. D. Rachma, ‘Effectivity of constructed wetland using Typha angustifolia in analyzing the decrease of heavy IOP Conference Series: Earth and Environmental Science, (2020). doi: 10.1088/1755-1315/419/1/012160. [Google Scholar]
  24. N. S. Prihatini, B. J. Priatmadi, A. Masrevaniah, and Soemarno, ‘Effects of the Purun Tikus (Eleocharis dulcis (Burm. F.) Trin. ex Hensch) planted in the horizontal subsurface flow-constructed wetlands (HSSF- CW) on Iron (Fe) concentration of the acid mine drainage’, Journal of Applied Environmental and Biological Sciences, vol. 6, no. 1, pp. 258–264, (2016). [Google Scholar]
  25. C. Rahmatia, I. Hilwan, I. Mansur, and I. Noor, ‘Analysis of Constructed Swamp Forest Vegetation as A Phitoremediation Agent in Coal Mining, South Kalimantan’, Media Konservasi, (2019), doi: 10.29244/medkon.24.1.29-39. [Google Scholar]
  26. B. Dhir, Phytoremediation: Role of aquatic plants in environmental clean-up. India, (2013). doi: 10.1007/978-81-322-1307-9. [Google Scholar]
  27. A. Yan, Y. Wang, S. N. Tan, M. L. Mohd Yusof, S. Ghosh, and Z. Chen, ‘Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land’, Front Plant Sci, vol. 11, no. April, pp. 1–15, (2020), doi: 10.3389/fpls.2020.00359. [CrossRef] [PubMed] [Google Scholar]
  28. Irhamni, S. Pandia, E. Purba, and W. Hasan, ‘Analisis Limbah Tumbuhan Fitoremediasi (Typha latifolia, Enceng gondok, kiambang ) dalam menyerap logam berat’, Serambi Engineering, vol. III, pp. 344–351, (2018). [Google Scholar]
  29. F. D. Tuheteru, C. Kusmana, I. Mansur, Iskandar, and E. J. Tuheteru, ‘Potential of lonkida (Nauclea orientalis L.) for phytoremediation of acid mined drainage at PT. bukit asam Tbk. (persero), Indonesia’, Research Journal of Botany, vol. 11, no. 1–3, pp. 9–17, (2016), doi: 10.3923/rjb.2016.9.17. [CrossRef] [Google Scholar]
  30. V. Kumar, J. Singh, and P. Kumar, ‘Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects’, Contaminants in Agriculture and Environment: Health Risks and Remediation, vol. 249404, pp. 38–57, (2019), doi: 10.26832/aesa-2019-cae-0161-04. [CrossRef] [Google Scholar]
  31. L. Ma et al., ‘Acid-tolerant plant species screened for rehabilitating acid mine drainage sites’, J Soils Sediments, vol. 15, no. 5, pp. 1104–1112, (2015), doi: 10.1007/s11368-015-1128-0. [CrossRef] [Google Scholar]
  32. K. B. Jethwa and S. Bajpai, ‘Role of plants in constructed wetlands (CWS): a review’, Journal of Chemical and Pharmaceutical Sciences, 2016. [Google Scholar]
  33. A. P. A. Sucahyo, W. S. Bargawa, M. Nurcholis, and T. A. Cahyadi, ‘Penerapan Wetland untuk Pengelolaan Air Asam Tambang’, KURVATEK, (2018), doi: 10.33579/krvtk.v3i2.860. [Google Scholar]
  34. Sufrianto, E. S. Mahreda, Y. M. Wahyuningsih, and I. Noor, ‘Coal Mining Closure Compliance Analysis at Banjar Regency, South Kalimantan, Indonesia’, Academic Research International, vol. 12, no. 2, pp. 62–70, (2021). [Google Scholar]
  35. M. H. Wong, ‘Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils’, Chemosphere, vol. 50, no. 6, pp. 775–780, (2003), doi: 10.1016/S0045-6535(02)00232-1. [CrossRef] [PubMed] [Google Scholar]
  36. M. R. Fikri, Y. F. Arifin, S. Bakri, and I. Noor, ‘Growth Quality and Metal Upatake Ability of Gempol (Nauclea orintalis L) on Reclamation of Mine CLosure’, Jurnal Hutan Tropis (tropical Forest Journal), vol. 10, no. 2, p. 193, (2022), doi: 10.20527/jht.v10i2.14129. [CrossRef] [Google Scholar]
  37. Ramadhani, Y. F. Arifin, G. S. Rudy, and I. Noor, ‘Identification and Quality of Growth the intercropping Species on The Reclamation Area of PT Jorong Barutama Greston’, Sylva Scienteae, vol. 05, no. 2, pp. 307–312, (2022). [CrossRef] [Google Scholar]
  38. G. Hilson and B. Murck, ‘Sustainable development in the mining industry: Clarifying the corporate perspective’, Resources Policy, (2000), doi: 10.1016/S0301-4207(00)00041-6. [Google Scholar]
  39. G. Naidu, S. Ryu, R. Thiruvenkatachari, Y. Choi, S. Jeong, and S. Vigneswaran, ‘A critical review on remediation, reuse, and resource recovery from acid mine drainage’, Environmental Pollution. (2019). doi: 10.1016/j.envpol.2019.01.085. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.