Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 03011
Number of page(s) 10
Section Environment Conservation, Restoration, Emergency and Rehabilitation
DOI https://doi.org/10.1051/e3sconf/202448503011
Published online 02 February 2024
  1. Adriani, E.; Gustaman, S.; Saputri, D.R.; Kusnadi, E.; Suheri; Emo, M. Export Commodity Analysis, 2012–2019, Agriculture, Industry and Mining Sector; Statistics Indonesia: Jakarta, Indonesia, (2020) [Google Scholar]
  2. Ministry of Energy and Mineral Resources. Handbook of Energy & Economic Statistics of Indonesia; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, (2020) [Google Scholar]
  3. Prematuri, R.; Turjaman, M.; Sato, T.; Tawaraya, K. The impact of nickel mining on soil properties and growth of two fast-growing tropical tree species. Int. J. For. Res. (2020) [Google Scholar]
  4. Segura-Salazar, J.; Tavares, L.M. Sustainability in the mineral industry: Seeking a Concensus on its meaning. Sustainability (2018) [Google Scholar]
  5. Kristanti, R.; Kartodihardjo, H.; Nugroho, B.; Mansur, I. Institutional performance of mining reclamation in forest areas of East Kalimantan. J. Manaj. Hutan Trop. 25 (2019) [Google Scholar]
  6. Kodir, A.; Hartono, D.M.; Haeruman, H.; Mansur, I. Integrated post-mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustain. Environ. Res., 27 (2017) [Google Scholar]
  7. Borišev, M.; Pajević, S.; Nikolić, N.; Pilipović, A.; Arsenov, D.; Župunski, M. Mine site restoration using silvicultural approach. In Bio-Geotechnologies for Mine Rehabilitation; Prasard, M.N.V., Favas, P.J.C., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands (2018) [Google Scholar]
  8. Pietrzykowski, M. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. 3 (2019) [Google Scholar]
  9. Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For., 46 (2015) [Google Scholar]
  10. Ma, Y., Rajkumar, M., Zhang, C., and Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag., 174 (2016) [Google Scholar]
  11. Ma, Y., Oliveira, R. S., Freitas, H., and Zhang, C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front. Plant Sci. 7 (2016) [Google Scholar]
  12. Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., and Nain, L. PGPR mediated alterations in root traits: way toward sustainable crop production. Front. Sustain. Food Syst. 4 (2021) [CrossRef] [Google Scholar]
  13. Fuchs G., Boll M., Heider J. Microbial degradation of aromatic compounds- From one strategy to four. Nat. Rev. Microbiol. 9 (2011) [Google Scholar]
  14. Xu M., He Z., Zhang Q., Liu J., Guo J., Sun G., Zhou J. Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments. Environ. Sci. Technol. 49 (2015) [Google Scholar]
  15. Bashan Y., de-Bashan L.E., Prabhu S.R., Hernandez J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013) Plant Soil. 378 (2014) [Google Scholar]
  16. Gkorezis, P. et al. Draft genome sequence of Arthrobacter sp. strain SPG23, a hydrocarbon-degrading and plant growth-promoting soil bacterium. Genome Announc. 3 (2015) [Google Scholar]
  17. B. Frey, Rieder S R, Brunner I, Plotze M, Koetzsch S, Lapenje Ales, Brandl H, Furrer G Weathering-Associated Bacteria from The Damma Glacier Forefield: Phsycological Capabilities and Impact on Granite Dissolution. J. of App. and Env. Microb. 76 (2010) [Google Scholar]
  18. K. Peeters, D. Ertz, A. Willems. Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antartica) harbours many new taxa. Syst. Appl. Microbiol. 34 (2010) [Google Scholar]
  19. L.C Kelly., C.S. Cockell, T. Thorsteinsson, V. Marteinsson, J. Stevenson. Pioneer microbial communities of the Fimmvöròuháls lava flow, Eyjafjallajökull, Iceland. Microb. Ecol. 68 (2014) [Google Scholar]
  20. D. Górniak, H. Marszalek, M. Kwasniak-Kominek, G. Rzepa, M. Manecki. Soil formation and initial microbiological activity on a foreland of an Arctic glacier (SW Svalbard). Appl. Soil Ecol., 114 (2017) [Google Scholar]
  21. Wu, X., Gaosen Zhang, Wei Zhang, Guangxiu Liu, Tuo Chen, Yun Wang, Haozhi Long, Xisheng Tai, Baogui Zhang, Zhongqin Li. Variations in culturable bacterial communities and biochemical properties in the foreland of the retreating Tianshan No. 1 glacier. Braz. J. Microbiol. 49 (2018) [Google Scholar]
  22. Cockell, CS., L.C. Kelly, V. Marteinsson. Actinobacteria- an ancient phylum active in volcanic rock weathering. Geomicrobiol. J. 30 (2013) [Google Scholar]
  23. Lathifah A N, Guo Y, Sakagami N, Suda W, Higuchi M, Nishizawa T, Prijambada I D, Ohta, H. Comparative Characterization of Bacterial Communities in Moss-Covered and Unvegetated Volcanic Deposits of Mount Merapi, Indonesia. Microbes and Env. 34 (2019) [Google Scholar]
  24. Hirano, A. Characterization of microbial community in soil horizons newly formed on volcanic deposits of Miyake-jima, Japan. Master’s thesis at Ibaraki University Graduate School of Agriculture (in Japanese) (2017) [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28 (2011) [Google Scholar]
  26. Dobereiner, J. Marriel, I.E., and Nery, M. Ecological distribution of Spirillum lipoferum Beijerinck. Can. J. Microbiol, 22 (1976) [Google Scholar]
  27. Martínez-Hidalgo, P., Galindo-Villardón, P., Trujillo, M. E., Igual, J. M. & Martínez-Molina, E. Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci. Rep., 4 (2014) [Google Scholar]
  28. Milagres, A.M., Machuca, A., Napoleao, D. Detection of siderophores production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods, 37 (1999) [CrossRef] [Google Scholar]
  29. Baakza, A., Vala, A.K,Dave, B.P., Dube, H.C., A comparative study of siderophore production by fungi from marine and terrestrial habitats. J. Exp. Mar. Biol. Ecol., 311 (2004) [CrossRef] [Google Scholar]
  30. Schwyn, B., Neilands, J.B., Universal chemical assay for detection and determination of siderophores. Anal. Biochem., 160 (1987) [Google Scholar]
  31. Louden, B. C. D. Haarmann, A. M. Lynne, Use of blue agar CAS assay for siderophore detection. ASM, 5 (2011) [Google Scholar]
  32. Farh M.E., Y. Kim, J. Sukweenadhi, P. Singh, D. Yang.. Alumunium resistant, plant growth promoting bacteria induce overexpression of Alumunium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Alumunium stress. Microbiol. Res., 200 (2017) [Google Scholar]
  33. Rcheulishvili O, Tsverava L, Rcheulishvili A, Gurielidze M, Solomonia R, Metreveli N, Jojua N, Holman H Y Heavy Metal Spesific Proteomic Responses of Highly Resistant Arthrobacter globiformis 151B. J. Annals of Agrarian Science 17 (2018) [Google Scholar]
  34. Shilpi Mittal, J.-M.M., Goel, R. Isolation and characterization of aluminium and copper Resistant ‘P’ Solubilizing alkalophilic bacteria. Indian J. Biotechnol., 2 (2003) [Google Scholar]
  35. M. Manzoor, M. Kaleem Abbasi & Tariq Sultan Isolation of Phosphate Solubilizing Bacteria from Maize Rhizosphere and Their Potential for Rock Phosphate Solubilization–Mineralization and Plant Growth Promotion, Geomicrobiology J., 34:1, 81-95, (2017) [Google Scholar]
  36. Pereira, J.F., Zhou, G., Delhaize, E., Richardson, T., Zhou, M., Ryan, P.R.,. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann. Bot., 106 (2010) [Google Scholar]
  37. Xu X, Xu M, Zhao Q, Xia Y, Chen C, Shen Z. Complete Genome Sequence of Cd(II)-Resistant Arthrobacter sp. PGP41, a Plant Growth-Promoting Bacterium with Potential in Microbe-Assisted Phytoremediation. Curr Microbiol. 75 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.