Open Access
Issue
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
Article Number 04002
Number of page(s) 11
Section Water, Sanitation, and Hygiene (WASH)
DOI https://doi.org/10.1051/e3sconf/202448504002
Published online 02 February 2024
  1. WHO, “Antimicrobial Resistance,” (17 November 2021). [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. [Google Scholar]
  2. J. R. Johnson, M. R. Sannes, C. Croy, B. Johnston, C. Clabots, M. A. Kuskowski, J. Bender, K. E. Smith, P. L. Winokur and E. A. Belongia, “Antimicrobial Drug–Resistant Escherichia coli from Humans and Poultry Products, Minnesota and Wisconsin, 2002–2004,” Emerging Infectious Diseases, vol. 13, no. 6, pp. 838-846, (2007) [CrossRef] [PubMed] [Google Scholar]
  3. WHO, “WHO publishes list of bacteria for which new antibiotics are urgently needed,” (27 Februari 2017). [Online]. Available: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. [Google Scholar]
  4. R. Card, S. Cawthraw, J. Nunez-Garcia, R. Ellis, G. Kay, M. Pallen, M. Woodward and M. Anjum, “An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli,” mBio, vol. 8, no. 4, pp. e00777-17, (July/August 2017) [CrossRef] [PubMed] [Google Scholar]
  5. N. Puvaca and R. d. L. Frutos, “Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals,” Antibiotics, vol. 10, pp. 69-88, (2021) [CrossRef] [PubMed] [Google Scholar]
  6. D. Kang, R. K. Sinuraya, T. Rostinawati and R. Abdulah, “Mutasi Gen blaCTX-M sebagai Faktor Risiko Penyebab Resistensi Antibiotik,” Jurnal Farmasi Klinik Indonesia, pp. 135-152, (2017) [Google Scholar]
  7. K. Liguori, I. Keenum, B. C. Davis, J. Calarco, E. Milligan, V. J. Harwood and A. Pruden, “Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control,” Environmental Science & Technology, vol. 56, no. 13, p. 9149−9160, (2022) [CrossRef] [PubMed] [Google Scholar]
  8. F. Molina, E. López-Acedo, R. Tabla, I. Roa, A. Gómez and J. E. Rebollo, “Improved detection of Escherichia coli and coliform bacteria by multiplex PCR,” BMC Biotechnology, p. 48, (2015) [Google Scholar]
  9. N. Puspandari, S. Sunarno, T. Febrianti, D. Febriyana, R. D. Saraswati, I. Rooslamiati, N. Amalia, S. Nursofiah, Y. Hartoyo, H. Herna, M. Mursinah, F. Muna, N. Aini, Y. Risniati and P. W. Dhewantara, “Extended spectrum beta-lactamase-producing Tricycle project (pilot) in Indonesia,” One Health, vol. 13, (2021) [Google Scholar]
  10. World Health Organization, “GLASS whole-genome sequencing for surveillance of antimicrobial resistance,” World Health Organization, (2020) [Google Scholar]
  11. Pemerintah Kota Bekasi, “Kondisi Geografis Wilayah Kota Bekasi,” (2022). [Online]. Available: https://www.bekasikota.go.id/pages/kondisi-geografis-wilayah-kota-bekasi. [Google Scholar]
  12. Google Maps, 2023. [Online]. [Google Scholar]
  13. T. Febrianti, S. Nursofiah, N. Amalia, D. Febriyana, R. D. Saraswati, N. Puspandari, Sunarno and Efadeswarni, “Performa Tryptone Bile X-Glucuronide (TBX) yang disuplementasikan dengan Cefotaxime sebagai Medium Selektif Untuk Skrining ESBL-E.coli dari Sampel Lingkungan,” Buletin Penelitian Kesehatan, vol. 49, no. 1, pp. 1-8, (2021) [CrossRef] [Google Scholar]
  14. F. Adzitey, N. Huda and G. R. R. Ali, “Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks,” 3 Biotech, p. 97–107, (2013) [Google Scholar]
  15. S. Gummadi and V. Kandula, “A Review On Electrophoresis, Capillary Electrophoresis And Hyphenations,” International Journal Of Pharmaceutical Sciences And Research, vol. 11, no. 12, pp. 6038-6056, (2020). [Google Scholar]
  16. H. Blaak, v. R. SR, S. MS, D. v. L. AE, I. R, v. d. B. HHJL, L.-V. F, S. FM and d. R. H. AM, “Prevalence of antibiotic resistant bacteria in the rivers Meuse, Rhine and New Meuse,” Rijksinstituut voor Volksgezondheid en Milieu RIVM, p. 73, (2011) [Google Scholar]
  17. X. Luo, X. Xiang, Y. Yang, G. Huang, K. Fu, R. Che and L. Chen, “Seasonal effects of river flow on microbial community coalescence and diversity in a riverine network,” FEMS Microbiology Ecology, vol. 96, no. 8, (2020) [Google Scholar]
  18. A. Daramusseng and Syamsir, “Studi Kualitas Air Sungai Karang Mumus Ditinjau dari Parameter Escherichia coli Untuk Keperluan Higiene Sanitasi,” Jurnal Kesehatan Lingkungan Indonesia, vol. 20, no. 1, pp. 1-6, (2021) [CrossRef] [Google Scholar]
  19. M. AbuOun, H. M. O’Connor, E. J. Stubberfield, J. Nunez-Garcia, E. Sayers, D. W. Crook, R. P. Smith and M. F. Anjum, “Characterizing Antimicrobial Resistant Escherichia coli and Associated Risk Factors in a Cross-Sectional Study of Pig Farms in Great Britain,” Front Microbiology, vol. 11, no. 861, (25 Mei 2020) [CrossRef] [Google Scholar]
  20. F. Baquero, J.-L. Martínez and R. Canton, “Antibiotics and Antibiotic Resistance in Water Environments,” Current Opinion in Biotechnology, vol. 19, no. 3, pp. 260-5, (2008) [CrossRef] [PubMed] [Google Scholar]
  21. W. S. Probert, a. G. M. Miller and K. E. Ledin, “Contaminated Stream Water as Source for Escherichia coli O157 Illness in Children,” Emerging Infectious Diseases, vol. 23, no. 7, p. 1216–1218, (2017) [CrossRef] [PubMed] [Google Scholar]
  22. US EPA, Ground Water Contamination, Chicago: US EPA, (2012) [Google Scholar]
  23. T. Naas, S. Oueslati, R. A. Bonnin, M. L. Dabos, A. Zavala, L. Dortet, P. Retailleau and B. I. Iorga, “Beta-lactamase database (BLDB) – structure and function,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 31, no. 2, p. 917–919, (2017) [CrossRef] [PubMed] [Google Scholar]
  24. E. D. L. Cadena, M. F. Mojica, N. Castillo, A. Correa, T. M. Appel, J. C. García-Betancur, C. J. Pallares and M. V. Villegas, “Genomic Analysis of CTX-M-Group-1-Producing Extraintestinal Pathogenic E. coli (ExPEc) from Patients with Urinary Tract Infections (UTI) from Colombia,” Antibiotics (Basel), vol. 9, no. 12, p. 899, (2020) [CrossRef] [PubMed] [Google Scholar]
  25. I. Herrig, S. Fleischmann, J. Regnery, J. Wesp, G. Reifferscheid and W. Manz, “Prevalence and seasonal dynamics of blaCTX-M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany,” PLoS ONE, p. (2020) [Google Scholar]
  26. M. Hiroi, F. Yamazaki, T. Harada, N. Takahashi, N. Iida, Y. Noda, M. Yagi, T. Nishio, T. Kanda, F. Kawamori, K. Sugiyama, T. Masuda, Y. Hara-Kudo and N. Ohashi, “Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in food-producing animals,” The Journal of Veterinary Medical Science, vol. 74, no. 2, pp. 189-95, (2012) [CrossRef] [PubMed] [Google Scholar]
  27. A. Irrgang, L. F. J. Fischer, H. Ghosh, E. Guiral, B. Guerra, S. Schmoger, C. Imirzalioglu, T. Chakraborty, J. A. Hammerl and A. Käsbohrer, “CTX-M-15-Producing E. coli Isolates from Food Products in Germany Are Mainly Associated with an IncF-Type Plasmid and Belong to Two Predominant Clonal E. coli Lineages,” Frontiers in Microbiology, vol. 21, no. 8, p. 2318, (2017) [CrossRef] [PubMed] [Google Scholar]
  28. C. Revilla, “Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids,” Antimicrob Agents Chemother, vol. 52, no. 4, pp. 1472-80, (2008) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.