Open Access
Issue |
E3S Web of Conf.
Volume 485, 2024
The 7th Environmental Technology and Management Conference (ETMC 2023)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 9 | |
Section | Air Quality Monitoring and Modelling, Emission Inventory, and Control | |
DOI | https://doi.org/10.1051/e3sconf/202448506003 | |
Published online | 02 February 2024 |
- Zhang, Bowen. “The effect of aerosols to climate change and society.” Journal of Ge-oscience and Environment Protection, 8.08, 55. (2020). [CrossRef] [Google Scholar]
- Chen, Jie, and Gerard Hoek. “Long-term exposure to PM and all-cause and cause-spe-cific mortality: a systematic review and meta-analysis.” Environment interna-tional, 143, 105974, (2020). [Google Scholar]
- Kim, Daeun, et al. “Estimation of health benefits from air quality improvement using the MODIS AOD dataset in Seoul, Korea.” Environmental research, 173, 452-461, (2019). [CrossRef] [PubMed] [Google Scholar]
- Teixeira, Ana Carolina Rodrigues, et al. “PM emissions from heavy-duty trucks and their impacts on human health.” Atmospheric Environment, 241, 117814 (2020). [CrossRef] [Google Scholar]
- Liu, Yuzhi, et al. “A review of aerosol optical properties and radiative effects.” Jour-nal of Meteorological Research, 28.6, 1003-1028, (2014). [CrossRef] [Google Scholar]
- Pöschl, Ulrich. “Atmospheric aerosols: composition, transformation, climate and health effects.” Angewandte Chemie International Edition, 44.46, 7520-7540, (2005). [CrossRef] [PubMed] [Google Scholar]
- Fuzzi, Sandro, et al. “Particulate matter, air quality and climate: lessons learned and future needs.” Atmospheric chemistry and physics, 15.14, 8217-8299, (2015). [CrossRef] [Google Scholar]
- Holben, Brent N., et al. “AERONET—A federated instrument network and data ar-chive for aerosol characterization.” Remote sensing of environment, 66.1, 1-16, (1998). [CrossRef] [Google Scholar]
- Nguyen [Google Scholar]
- Lestari, Deni Okta, et al. “Impact of 2016 weak La Niña Modoki event over the Indo-nesian region.” GEOMATE Journal, 17.61, 156-162, (2019). [Google Scholar]
- Mareta, Lesi, et al. “Influence of the positive Indian Ocean Dipole in 2012 and El Niño-southern oscillation (ENSO) in 2015 on the Indonesian Rainfall Variabil-ity.” IOP Conference Series: Earth and Environmental Science. Vol. 284. No. 1. IOP Publishing, (2019). [Google Scholar]
- Susilo, Gatot E., et al. “The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia.” Hydrological sciences journal 58.3, 539-548, (2013). [CrossRef] [Google Scholar]
- Gelaro, Ronald, et al. “The modern-era retrospective analysis for research and applica-tions, version 2 (MERRA-2).” Journal of climate, 30.14, 5419-5454, (2017). [CrossRef] [Google Scholar]
- Khoir, Aulia Nisa’ul, et al. “Spatio-temporal analysis of aerosol optical depth using ro-tated empirical orthogonal function over the Maritime Continent from 2001 to 2020.” Atmospheric Environment, 290, 119356, (2022). [CrossRef] [Google Scholar]
- Kuang, Qi, and Y. P. Wang. “SPATIAL-TEMPORAL CHARACTERISTICS OF THE AEROSOL OPTICAL DEPTH (AOD) DERIVED FROM LONGTERM (1980–2018) MERRA-2 OVER GUANGDONG.” The International Archives of the Photo-grammetry, Remote Sensing and Spatial Information Sciences, 42, 103-108, (2019). [Google Scholar]
- Wei, Jing, et al. “Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products.” Atmospheric environment, 202, 315-327 (2019). [CrossRef] [Google Scholar]
- Bilal, Muhammad, et al. “A new MODIS C6 Dark Target and Deep Blue merged aer-osol product on a 3 km spatial grid.” Remote Sensing, 10.3, 463 (2018). [CrossRef] [Google Scholar]
- Aldabash, Midyan, Filiz Bektas Balcik, and Paul Glantz. “Validation of MODIS C6. 1 and MERRA-2 AOD using AERONET observations: A comparative study over Tur-key.” Atmosphere, 11.9, 905 (2020). [CrossRef] [Google Scholar]
- Shaheen, Abdallah, Renguang Wu, and Midyan Aldabash. “Long-term AOD trend as-sessment over the Eastern Mediterranean region: A comparative study including a new merged aerosol product.” Atmospheric Environment, 238, 117736, (2020). [CrossRef] [Google Scholar]
- Shi, Yingxi R., et al. “Characterizing the 2015 Indonesia fire event using modified MODIS aerosol retrievals.” Atmospheric Chemistry and Physics, 19.1, 259-274, (2019). [CrossRef] [Google Scholar]
- Lei, Wenfang, et al. “Chemical characterization of ozone formation in the Houston‐Galveston area: A chemical transport model study.” Journal of Geophysical Research: Atmospheres, 109.D12, (2004). [Google Scholar]
- Kusumaningtyas, Sheila Dewi Ayu. “Aerosol Optical Depth (AOD) Over Four Indo-nesian Cities From The Aeronet Measurement: An Overview.” Jurnal Sains & Teknologi Modifikasi Cuaca, 20.2, 47-57, (2019). [Google Scholar]
- Wahyunto, Ritung, S., & Subagjo, H.. Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau Sumatera / Map of Area of Peatland Distribution and Carbon Content in Sumatera, 1990-2002. Wetlands International – Indonesia Programme & Wildlife Habitat Canada (WHC), 9, (2003). [Google Scholar]
- Miettinen, Jukka, Chenghua Shi, and Soo Chin Liew. “Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires.” Envi-ronmental management, 60, 747-757, (2017). [Google Scholar]
- Yulianti, Nina, Hiroshi Hayasaka, and Alpon Sepriando. “Recent trends of fire occur-rence in Sumatra (analysis using MODIS hotspot data): a comparison with fire occur-rence in Kalimantan.” Open Journal of Forestry, 3.4, 129-137, (2013). [CrossRef] [Google Scholar]
- Yulianti, N., Hayasaka, H., & Usup, A. Recent Forest and Peat Fire Trends in Indonesia the Latest Decade by MODIS Hotspot Data. Global Environmental Research, 16(1), 105–116, (2012). [Google Scholar]
- Albar, Israr, et al. “Spatio-temporal analysis of land and forest fires in Indonesia using MODIS active fire dataset.” Land-atmospheric research applications in South and Southeast Asia: 105-127, (2018). [Google Scholar]
- Hutauruk, Rheinhart CH, et al. “Performance of MODIS Deep Blue Collection 6.1 Aerosol Optical Depth Products Over Indonesia: Spatiotemporal Variations and Aero-sol Types.” Advances in Meteorology 2022, (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.