Open Access
Issue
E3S Web Conf.
Volume 487, 2024
2023 7th International Conference on Renewable Energy and Environment (ICREE 2023)
Article Number 02002
Number of page(s) 13
Section Energy Conservation and Emission Reduction
DOI https://doi.org/10.1051/e3sconf/202448702002
Published online 06 February 2024
  1. Comité Español de IIuminación., Instituto para la Diversificación y Ahorro de la Energía, and G. de España. Ministerio de Ciencia y Tecnología, Guía Técnica de Eficiencia Energética en Iluminación. Hospitales y Centros de Atención Primaria. Madrid (Spain): Instituto para la Diversificación y Ahorro de la Energía, ( 2001) [Google Scholar]
  2. I. Acosta, R. P. Leslie, and M. G. Figueiro, “Analysis of circadian stimulus allowed by daylighting in hospital rooms,” Lighting Research and Technology, vol. 49, no. 1, pp. 49–61, (Feb. 2017), doi: 10.1177/1477153515592948. [CrossRef] [Google Scholar]
  3. International Energy Agency, Transition to Sustainable Buildings Strategies and opportunities to 2050. Paris, France (2013), doi: 10.1787/9789264202955-en. [Google Scholar]
  4. W. R. Ryckaert, C. Lootens, J. Geldof, and P. Hanselaer, “Criteria for energy efficient lighting in buildings,” Energy Build, vol. 42, no. 3, pp. 341–347 (2010), doi: 10.1016/j.enbuild.2009.09.012. [CrossRef] [Google Scholar]
  5. D. Urge-Vorsatz, K. Petrichenko, M. Staniec, and J. Eom, “Energy use in buildings in a long-term perspective,” CurrOpin Environ Sustain, vol. 5, no. 2, pp. 141–151 (2013), doi: 10.1016/j.cosust.2013.05.004. [Google Scholar]
  6. A. Nabil and J. Mardaljevic, “Useful daylight illuminance: a new paradigm for assessing daylight in buildings,” Lighting Research & Technology, vol. 37, no. 1, pp. 41–57, 2005. [CrossRef] [Google Scholar]
  7. M. A. Campano, M. T. Aguilar, J. Fernández-Agüera, and S. Domínguez-Amarillo, “Optimization of the Window Design in Offices for a Proper Circadian Stimulus: Case Study in Madrid,” International Journal of Engineering and Technology, vol. 11, no. 2, pp. 127–131 (2019), doi: 10.7763/IJET.2019.V11.1134. [CrossRef] [Google Scholar]
  8. I. Acosta, J. F. Molina, and M. A. Campano, “Analysis of Circadian Stimulus and Visual Comfort Provided by Window Design in Architecture,” International Journal of Engineering and Technology, vol. 9, no. 3, pp. 198–204 (2017), doi: 10.7763/ijet.2017.v9.970. [CrossRef] [Google Scholar]
  9. P. Bustamante, I. Acosta, J. León, and M. A. Campano, “Assessment of color discrimination of different light sources,” Buildings, vol. 11, no. 11 (2021), doi: 10.3390/buildings11110527. [CrossRef] [Google Scholar]
  10. M. A. Campano, I. Acosta, J. Fernández-Agüera, and J. J. Sendra, “Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate,” J Build Perform Simul, vol. 8, no. 4, pp. 226–238 (2015), doi: 10.1080/19401493.2014.913683. [CrossRef] [Google Scholar]
  11. M. T. Aguilar-Carrasco, S. Domínguez-Amarillo, I. Acosta, and J. J. Sendra, “Indoor lighting design for healthier workplaces: natural and electric light assessment for suitable circadian stimulus,” Opt Express, vol. 29, no. 19, p. 29899 (2021), doi: 10.1364/oe.430747. [CrossRef] [PubMed] [Google Scholar]
  12. S. Treado, G. Gillette, and T. Kusuda, “Daylighting with windows, skylights, and clerestories,” Energy Build, vol. 6, no. 4, pp. 319–330 (1984), doi: 10.1016/03787788(84)90015-X. [CrossRef] [Google Scholar]
  13. L. Bellia, I. Acosta, M. Á. Campano, and F. Fragliasso, “Impact of daylight saving time on lighting energy consumption and on the biological clock for occupants in office buildings,” Solar Energy, vol. 211, pp. 1347–1364 (Nov. 2020), doi: 10.1016/j.solener.2020.10.072. [CrossRef] [Google Scholar]
  14. G. Zissis, “Energy Consumption and Environmental and Economic Impact of Lighting: The Current Situation,” in Handbook of Advanced Lighting Technology, R. Karlicek, C.-C. Sun, G. Zissis, and R. Ma, Eds., Chan, Switzerland: Springer (2016), pp. 1–13. doi: 10.1007/978-3-319-00295-8_40-1. [Google Scholar]
  15. T. y A. D. G. de E. Ministerio de Energía, “Plan Nacional de Acción de Eficiencia Energética 2017-2020,” Madrid, Spain (2017). [Google Scholar]
  16. I. Acosta, M. A. Campano, and J. F. Molina, “Analysis of energy savings and visual comfort produced by the proper use of windows,” International Journal of Engineering and Technology, vol. 8, no. 5, pp. 358–365 (2016), doi: 10.7763/ijet.2016.v8.913. [CrossRef] [Google Scholar]
  17. I. Acosta, M. A. Campano, and J. F. Molina, “Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces,” Appl Energy, vol. 168, pp. 493–506 (Apr. 2016), doi: 10.1016/j.apenergy.2016.02.005. [CrossRef] [Google Scholar]
  18. A. Ruiz, M. Á. Campano, I. Acosta, and Ó. Luque, “Partial Daylight Autonomy (DAp): A New Lighting Dynamic Metric to Optimize the Design of Windows for Seasonal Use Spaces,” Applied Sciences, vol. 11, no. 17, p. 8228 (2021), doi: 10.3390/app11178228. [CrossRef] [Google Scholar]
  19. Instituto para la Diversificación y ahorro de la Energía, Guía Técnica Aprovechamiento de la luz natural en la iluminación de edificios. Madrid (Spain): Instituto para la Diversificación y ahorro de la Energía ( 2005). [Google Scholar]
  20. I. Acosta, M. A. Campano, S. Domínguez, and J. Fernández-Agüera, “Minimum Daylight Autonomy: A New Concept to Link Daylight Dynamic Metrics with Daylight Factors,” LEUKOS Journal of Illuminating Engineering Society of North America, vol. 15, no. 4, pp. 251–269 (2019), doi: 10.1080/15502724.2018.1564673. [CrossRef] [Google Scholar]
  21. I. Acosta, M. Á. Campano, S. Domínguez-Amarillo, and C. Muñoz, “Dynamic Daylight Metrics for Electricity Savings in Offices: Window Size and Climate Smart Lighting Management,” Energies (Basel), vol. 11, no. 11, p. 3143 (Nov. 2018), doi: 10.3390/en11113143. [CrossRef] [Google Scholar]
  22. I. Acosta, M. A. Campano, J. F. Molina, and J. Fernández-Agüera, “Analysis of Visual Comfort and Circadian Stimulus Provided by Window Design in Educational Spaces,” International Journal of Engineering and Technology, vol. 11, no. 2, pp. 105–110 (2019), doi: 10.7763/ijet.2019.v11.1131. [CrossRef] [Google Scholar]
  23. I. Acosta, M. A. Campano, P. Bustamante, and J. F. Molina, “Smart Controls for Lighting Design: Towards a Study of the Boundary Conditions,” International Journal of Engineering and Technology, vol. 10, no. 6, pp. 481–486 (2018), doi: 10.7763/ijet.2018.v10.1106. [CrossRef] [Google Scholar]
  24. M. Á. Campano, I. Acosta, S. Domínguez, and R. López-Lovillo, “Dynamic analysis of office lighting smart controls management based on user requirements,” Autom Constr, vol. 133 (2022), doi: 10.1016/j.autcon.2021.104021. [Google Scholar]
  25. I. Acosta, M. Á. Campano, S. Domínguez, and J. Navarro, “Continuous overcast daylight autonomy (DAo.con): A new dynamic metric for sensor-less lighting smart controls,” Leukos, 2022, doi: 10.1080/15502724.2022.2135528. [Google Scholar]
  26. R. M. López, M. T. Aguilar, S. Domínguez-Amarillo, and M. Á. Campano, “Roadmap for User-Performance Drive Lighting Management Logic,” International Journal of Engineering and Technology, vol. 11, no. 2, pp. 143–149, 2019, doi: 10.7763/IJET.2019.V11.1137. [CrossRef] [Google Scholar]
  27. L. Bellia and F. Fragliasso, “New parameters to evaluate the capability of a daylightlinked control system in complementing daylight,” Build Environ, vol. 123, pp. 223–242 ( 2017), doi: 10.1016/j.buildenv.2017.07.001 [CrossRef] [Google Scholar]
  28. L. Bellia and F. Fragliasso, “Automated daylight-linked control systems performance with illuminance sensors for side-lit offices in the Mediterranean area,” Autom Constr, vol. 100 (July 2018), pp. 145–162, 2019, doi: 10.1016/j.autcon.2018.12.027 [CrossRef] [Google Scholar]
  29. L. Bellia, F. Fragliasso, and E. Stefanizzi, “Why are daylight-linked controls (DLCs) not so spread? A literature review,” Build Environ, vol. 106, pp. 301–312 (2016), doi: 10.1016/j.buildenv.2016.06.040 [CrossRef] [Google Scholar]
  30. P. M. Esquivias, C. M. Munoz, I. Acosta, D. Moreno, and J. Navarro, “Climate-based daylight analysis of fixed shading devices in an open-plan office,” Lighting Research and Technology, vol. 48, no. 2, pp. 205–220 ( 2016), doi: 10.1177/1477153514563638 [CrossRef] [Google Scholar]
  31. I. Acosta, M. A. Campano, R. Leslie, and L. Radetski, “Daylighting design for healthy environments: analysis of educational spaces for optimal circadian stimulus,” Solar Energy, vol. 193, pp. 584–596 (Nov. 2019), doi: 10.1016/j.solener.2019.10.004 [CrossRef] [Google Scholar]
  32. M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Research Reviews, vol. 50, no. 2. pp. 213–228 (Dec. 15, 2005). doi: 10.1016/j.brainresrev.2005.07.002 [CrossRef] [PubMed] [Google Scholar]
  33. M. A. Campano, “Confort térmico y eficiencia energética en espacios con alta carga interna climatizados: Aplicación a espacios docentes no universitarios en Andalucía. Doctoral Thesis,” Doctoral Thesis, Universidad de Sevilla, Seville (2015). [Online]. Available: https://idus.us.es/xmlui/handle/11441/30632 [Google Scholar]
  34. AssociationSuisse des Electriciens, Éclairageintérieur par la lumière du jour Swiss Norm SN 418911. Geneva, Switzerland (1989) [Google Scholar]
  35. C. F. Reinhart, J. Mardaljevic, and Z. Rogers, “Dynamic Daylight Performance Metrics for Sustainable Building Design,” LEUKOS Journal of Illuminating Engineering Society of North America, vol. 3, no. 1, pp. 7–31 (2006), doi: 10.1582/LEUKOS.2006.03.01.001n [CrossRef] [Google Scholar]
  36. J. Mardaljevic, “Simulation of annual daylighting profiles for internal illuminance,” International Journal of Lighting Research and Technology, vol. 32, no. 3, pp. 111–118 (Sep. 2000), doi: 10.1177/096032710003200302. [CrossRef] [Google Scholar]
  37. S. Crone, Radiance Users Manual Vol. 2. San Francisco: Lawrence Berkeley Laboratory, 1992. [Online]. Available: https://floyd.lbl.gov/radiance/refer/usman2.pdf [Google Scholar]
  38. J. Mardaljevic, “Validation of a lighting simulation program under real sky conditions,” Lighting Research and Technologyight, vol. 27, pp. 181–188 (1995), doi: 10.1177/14771535950270040701 [CrossRef] [Google Scholar]
  39. J. Mardaljevic, “Daylight simulation: validation, sky models and daylight coefficients,” Loughborough University (1999) [Online]. Available: https://repository.lboro.ac.uk/articles/thesis/Daylight_simulation_validation_sky_models_and_daylight_coefficients/9460817 [Google Scholar]
  40. M. T. Aguilar-Carrasco, J. Díaz-Borrego, I. Acosta, M. Á. Campano, and S. Domínguez-Amarillo, “Validation of lighting parametric workflow tools of Ladybug and Solemma using CIE test cases,” Journal of Building Engineering, vol. 64, p. 105608 (Apr. 2023), doi: 10.1016/J.JOBE.2022.105608 [CrossRef] [Google Scholar]
  41. C. F. Reinhart and P.-F. Breton, “Experimental Validation of Autodesk® 3ds Max® Design 2009 and Daysim 3.0,” LEUKOS Journal of Illuminating Engineering Society of North America, vol. 6, no. 1, pp. 7–35 (2009), doi: 10.1582/LEUKOS.2009.06.01001. [CrossRef] [Google Scholar]
  42. S. Darula and R. Kittler, “CIE general sky standard defining luminance distributions,” in International Building Performance Simulation Association (IBPSA), Montreal, QC Canada (2002), pp. 11–13 [Google Scholar]
  43. International Organization for Standardization, ISO 15469:2004. Spatial Distribution of Daylight CIE Standard General Sky. Geneva, Switzerland: International Standarisation Office (2004) [Google Scholar]
  44. I. Acosta, C. Muñoz, P. Esquivias, D. Moreno, and J. Navarro, “Analysis of the accuracy of the sky component calculation in daylighting simulation programs,” Solar Energy, vol. 119, pp. 54–67 (Sep. 2015), doi: 10.1016/j.solener.2015.06.022 [CrossRef] [Google Scholar]
  45. I. Acosta, J. Navarro, and J. J. Sendra, “Towards an analysis of daylighting simulation software,” Energies (Basel), vol. 4, no. 7, pp. 1010–1024 (Jun. 2011), doi: 10.3390/en4071010 [CrossRef] [Google Scholar]
  46. M. Á. A. Campano, I. Acosta, A. L. L. León, and C. Calama, “Validation Study for Daylight Dynamic Metrics by Using Test Cells in Mediterranean Area,” International Journal of Engineering and Technology, vol. 10, no. 6, pp. 487–491 (Dec. 2018), doi: 10.7763/ijet.2018.v10.1107 [CrossRef] [Google Scholar]
  47. A. L. León -Rodríguez, R. Suárez, P. Bustamante, M. A. Campano, and D. Moreno Rangel, “Design and performance of test cells as an energy evaluation model of facades in a mediterranean building area,” Energies (Basel), vol. 10, no. 11, p. 1816 (Nov. 2017), doi: 10.3390/en10111816 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.