Open Access
Issue
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
Article Number 01005
Number of page(s) 6
Section Advanced Energy Storage & Conversion
DOI https://doi.org/10.1051/e3sconf/202448801005
Published online 06 February 2024
  1. P. Lopes, V. Stamenkovic, Past, present, and future of lead–acid batteries. Science 369, 923-924 (2020) [CrossRef] [PubMed] [Google Scholar]
  2. Y. Zhang, C. Zhou, J. Yang, S. Xue, H. Gao, X. Yan, Q. Huo, S. Wang, y. Cao, J. Yan, K. Gao, L. Wang, Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review, Journal of Power Sources, 520 (2022) [Google Scholar]
  3. Z. Wang, G. Feng, D. Zhen, F. Gu, A. Ball, A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles, Energy Reports, 7, 5141-5161 (2021) [CrossRef] [Google Scholar]
  4. S.K. Pradhan, B. Chakraborty, Battery management strategies: An essential review for battery state of health monitoring techniques, Journal of Energy Storage, 51 (2022) [Google Scholar]
  5. S. Jiang, Z. Song, A review on the state of health estimation methods of lead-acid batteries, Journal of Power Sources, 517 (2022) [Google Scholar]
  6. F. Heinrich, M. Pruckner, Virtual experiments for battery state of health estimation based on neural networks and in-vehicle data. Journal of Energy Storage, 48 (2022) [Google Scholar]
  7. D. Zhao, H. Li, F. Zhou, Y. Zhong, G. Zhang, Z. Liu, J. Hou, Research Progress on Data-Driven Methods for Battery States Estimation of Electric Buses, World Electric Vehicle Journal, 14, 145 (2023) [CrossRef] [Google Scholar]
  8. E. Kim, M. Kim, J., Kim, J. Kim, J. H. Park, K.T. Kim, J.H. Park, T. Kim, K. Min, Data-Driven Methods for Predicting the State of Health, State of Charge, and Remaining Useful Life of Li-Ion Batteries: A Comprehensive Review, Int. J. Precis. Eng. Manuf, 24, 1281-1304 (2023) [CrossRef] [Google Scholar]
  9. M. Zhang, D. Yang, J. Du, H. Sun, L. Li, L. Wang, K. Wang, A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms, Energies, 16, 3167 (2023) [CrossRef] [Google Scholar]
  10. E. Festijo, D.E. Juanico, P. Nonat, X. Galapia, K.M. Malab, Acoustic non-invasive estimation of lead-acid battery state of health: Application for cell-level charge balancing, Energy Reports, 8, 372-377 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.