Open Access
Issue
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
Article Number 01008
Number of page(s) 18
Section Advanced Energy Storage & Conversion
DOI https://doi.org/10.1051/e3sconf/202448801008
Published online 06 February 2024
  1. A. Pasupathy, R. Velraj, and R. V Seeniraj, “Phase change material-based building architecture for thermal management in residential and commercial establishments,” Renewable and Sustainable Energy Reviews, vol. 12, pp. 39–64, Jan. (2008), doi: 10.1016/j.rser.2006.05.010. [CrossRef] [Google Scholar]
  2. A. Yadav et al., “A Systematic Review on Bio-Based Phase Change Materials,” International Journal of Automotive and Mechanical Engineering, vol. 20, no. 2 SE-Articles, pp. 10547–10558, Aug. (2023), doi: 10.15282/ijame.20.2.2023.16.0814. [CrossRef] [Google Scholar]
  3. B. Kalidasan, A. K. Pandey, S. Rahman, A. Yadav, M. Samykano, and V. V Tyagi, “Graphene–Silver Hybrid Nanoparticle based Organic Phase Change Materials for Enhanced Thermal Energy Storage,” Sustainability, vol. 14, no. 20 (2022), doi: 10.3390/su142013240. [CrossRef] [Google Scholar]
  4. K. B, A. K. Pandey, S. Shahabuddin, M. Samykano, T. M, and R. Saidur, “Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches,” Journal of Energy Storage, vol. 27, p. 101118 (2020), doi: https://doi.org/10.1016/j.est.2019.101118. [CrossRef] [Google Scholar]
  5. A. K. Pandey et al., “Utilization of solar energy for wastewater treatment: Challenges and progressive research trends,” Journal of Environmental Management, vol. 297, p. 113300 (2021), doi: https://doi.org/10.1016/j.jenvman.2021.113300. [CrossRef] [PubMed] [Google Scholar]
  6. V. V Tyagi et al., “Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: A prospective research approach,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101318, (2021), doi: https://doi.org/10.1016/j.seta.2021.101318. [CrossRef] [Google Scholar]
  7. Y. Zhang, Y. Shen, K. Shi, T. Wang, and E. Harkin-Jones, “Constructing a filler network for thermal conductivity enhancement in epoxy composites via reaction-induced phase separation,” Composites Part A: Applied Science and Manufacturing, vol. 110, pp. 62–69, 2018, doi: https://doi.org/10.1016/j.compositesa.2018.04.009. [CrossRef] [Google Scholar]
  8. Z. Yu, D. Feng, Y. Feng, and X. Zhang, “Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes,” Composites Part A: Applied Science and Manufacturing, vol. 152, p. 106703 (2022), doi: https://doi.org/10.1016/j.compositesa.2021.106703. [CrossRef] [Google Scholar]
  9. C. Zheng, H. Zhang, L. Xu, and F. Xu, “Carbonized bamboo parenchyma cells loaded with functional carbon nanotubes for preparation composite phase change materials with superior thermal conductivity and photo-thermal conversion efficiency,” Journal of Building Engineering, vol. 56, p. 104749 (2022), doi: https://doi.org/10.1016/j.jobe.2022.104749. [CrossRef] [Google Scholar]
  10. Z. Chen, F. Shan, L. Cao, and G. Fang, “Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage,” Solar Energy Materials and Solar Cells, vol. 102, pp. 131–136 (2012), doi: https://doi.org/10.1016/j.solmat.2012.03.013. [CrossRef] [Google Scholar]
  11. T. Khadiran, M. Z. Hussein, Z. Zainal, and R. Rusli, “Shape-stabilized n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage,” Journal of the Taiwan Institute of Chemical Engineers, vol. 55, pp. 189–197 (2015), doi: https://doi.org/10.1016/j.jtice.2015.03.028. [CrossRef] [Google Scholar]
  12. M. Aramesh and B. Shabani, “Metal foams application to enhance the thermal performance of phase change materials: A review of experimental studies to understand the mechanisms,” Journal of Energy Storage, vol. 50, p. 104650 (2022), doi: https://doi.org/10.1016/j.est.2022.104650. [CrossRef] [Google Scholar]
  13. R. Wen et al., “A novel composite phase change material from lauric acid, nano-Cu and attapulgite: Preparation, characterization and thermal conductivity enhancement,” Journal of Energy Storage, vol. 46, p. 103921 (2022), doi: https://doi.org/10.1016/j.est.2021.103921. [CrossRef] [Google Scholar]
  14. Y. Bian, K. Wang, J. Wang, Y. Yu, M. Liu, and Y. Lv, “Preparation and properties of capric acid: Stearic acid/hydrophobic expanded perlite-aerogel composite phase change materials,” Renewable Energy, vol. 179, pp. 1027–1035 (2021), doi: https://doi.org/10.1016/j.renene.2021.07.125. [CrossRef] [Google Scholar]
  15. T. Chen et al., “Fatty amines/graphene sponge form-stable phase change material composites with exceptionally high loading rates and energy density for thermal energy storage,” Chemical Engineering Journal, vol. 382, p. 122831 (2020), doi: https://doi.org/10.1016/j.cej.2019.122831. [CrossRef] [Google Scholar]
  16. A. Sarı, A. Bicer, C. Alkan, and A. N. Özcan, “Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell,” Solar Energy Materials and Solar Cells, vol. 193, pp. 1–6 (2019), doi: https://doi.org/10.1016/j.solmat.2019.01.003. [CrossRef] [Google Scholar]
  17. I. Chrysafi, K. Avraam, and T. Krasia-Christoforou, “n-Eicosane-Impregnated nonwoven phase change mats of electrospun Poly(ethylene oxide)/Poly(methyl methacrylate) blended fibers,” Materials Chemistry and Physics, vol. 296, p. 127201 (2023), doi: https://doi.org/10.1016/j.matchemphys.2022.127201. [CrossRef] [Google Scholar]
  18. A. Kathalingam, D. Vikraman, K. Karuppasamy, and H.-S. Kim, “Water mediated electrochemical conversion of PMMA and other organic residues into graphene and carbon materials,” Ceramics International, vol. 48, no. 19, Part B, pp. 28906–28917, 2022, doi: https://doi.org/10.1016/j.ceramint.2022.04.041. [CrossRef] [Google Scholar]
  19. E. Padín-González et al., “Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines,” Frontiers in Bioengineering and Biotechnology, vol. 10 (2022), doi: 10.3389/fbioe.2022.882363. [Google Scholar]
  20. C. Gao et al., “Highly improved mechanical performances of polyvinyl butyral through fluorescent carbon dots,” Materials Letters, vol. 280, p. 128537 (2020), doi: https://doi.org/10.1016/j.matlet.2020.128537. [CrossRef] [Google Scholar]
  21. S. Ren, J. Yan, M. Li, Z. Tao, M. Yang, and G. Wang, “High thermal conductive shape-stabilized phase change materials based on water-borne polyurethane/boron nitride aerogel,” Ceramics International, vol. 49, no. 6, pp. 8945–8951 (2023), doi: https://doi.org/10.1016/j.ceramint.2022.11.049. [CrossRef] [Google Scholar]
  22. B. Kalidasan, A. K. Pandey, R. Saidur, B. Aljafari, A. Yadav, and M. Samykano, “Green synthesized 3D coconut shell biochar/polyethylene glycol composite as thermal energy storage material,” Sustainable Energy Technologies and Assessments, vol. 60, p. 103505 (2023), doi: https://doi.org/10.1016/j.seta.2023.103505. [CrossRef] [Google Scholar]
  23. M. Giorcelli, P. Savi, M. Miscuglio, M. H. Yahya, and A. Tagliaferro, “Analysis of MWCNT/epoxy composites at microwave frequency: reproducibility investigation,” Nanoscale Research Letters, vol. 9, no. 1, p. 168 (2014), doi: 10.1186/1556-276X-9-168. [CrossRef] [PubMed] [Google Scholar]
  24. F. Hanif et al., “Form-Stable Phase Change Material with Wood-Based Materials as Support,” Polymers, vol. 15, no. 4 (2023), doi: 10.3390/polym15040942. [CrossRef] [PubMed] [Google Scholar]
  25. A. Yadav, M. Samykano, A. K. Pandey, T. Kareri, and B. Kalidasan, “Optimizing Thermal Properties and Heat Transfer in 3D Biochar-Embedded Organic Phase Change Materials for Thermal Energy Storage,” Materials Today Communications, p. 108114 (2024), doi: https://doi.org/10.1016/j.mtcomm.2024.108114. [Google Scholar]
  26. A. Roshanghias, G. Sodeifian, A. A. Javidparvar, and S. Tarashi, “Construction of a novel polytetrafluoroethylene-based sealant paste: The effect of polyvinyl butyral (PVB) and nano-alumina on the sealing performance and construction formulations,” Results in Engineering, vol. 14, p. 100460 (2022), doi: https://doi.org/10.1016/j.rineng.2022.100460. [CrossRef] [Google Scholar]
  27. X. Zhang et al., “Preparation and performance of novel form-stable composite phase change materials based on polyethylene glycol/White Carbon Black assisted by super-ultrasound-assisted,” Thermochimica Acta, vol. 638, pp. 35–43 (2016), doi: https://doi.org/10.1016/j.tca.2016.06.012. [CrossRef] [Google Scholar]
  28. R. Li et al., “Enhanced thermal conductivity of composite phase change materials based on carbon modified expanded perlite,” Materials Chemistry and Physics, vol. 261, p. 124226 (2021), doi: https://doi.org/10.1016/j.matchemphys.2021.124226. [CrossRef] [Google Scholar]
  29. Y. Zhang, Z. Jia, A. Moqeet Hai, S. Zhang, and B. Tang, “Shape-stabilization micromechanisms of form-stable phase change materials-A review,” Composites Part A: Applied Science and Manufacturing, vol. 160, p. 107047 (2022), doi: https://doi.org/10.1016/j.compositesa.2022.107047. [CrossRef] [Google Scholar]
  30. C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Solar Energy, vol. 76, no. 4, pp. 423–453 (2004), doi: https://doi.org/10.1016/j.solener.2003.08.039. [NASA ADS] [CrossRef] [Google Scholar]
  31. K. Balasubramanian, A. Kumar Pandey, R. Abolhassani, H.-G. Rubahn, S. Rahman, and Y. Kumar Mishra, “Tetrapods based engineering of organic phase change material for thermal energy storage,” Chemical Engineering Journal, vol. 462, p. 141984 (2023), doi: https://doi.org/10.1016/j.cej.2023.141984. [CrossRef] [Google Scholar]
  32. K. B et al., “Synthesis and characterization of conducting Polyaniline@cobalt-Paraffin wax nanocomposite as nano-phase change material: Enhanced thermophysical properties,” Renewable Energy, vol. 173, pp. 1057–1069 (2021), doi: https://doi.org/10.1016/j.renene.2021.04.050. [CrossRef] [Google Scholar]
  33. W. U. Rehman et al., “Synthesis, characterization, stability and thermal conductivity of multi-walled carbon nanotubes (MWCNTs) and eco-friendly jatropha seed oil based nanofluid: An experimental investigation and modeling approach,” Journal of Molecular Liquids, vol. 293, p. 111534, (2019), doi: https://doi.org/10.1016/j.molliq.2019.111534. [CrossRef] [Google Scholar]
  34. M. Soltanimehr and M. Afrand, “Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems,” Applied Thermal Engineering, vol. 105, pp. 716–723 (2016), doi: https://doi.org/10.1016/j.applthermaleng.2016.03.089. [CrossRef] [Google Scholar]
  35. R. Kumar R et al., “Effect of surfactant on functionalized multi-walled carbon nano tubes enhanced salt hydrate phase change material,” Journal of Energy Storage, vol. 55, p. 105654 (2022), doi: https://doi.org/10.1016/j.est.2022.105654. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.