Open Access
Issue
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
Article Number 02008
Number of page(s) 9
Section Clean & Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202448802008
Published online 06 February 2024
  1. Kumar S. Renewable and sustainable energy reviews solar photovoltaic energy progress in India : A review. Renew Sustain Energy Rev 59, 927–39 (2016). https://doi.org/10.1016/j.rser.2016.01.049. [Google Scholar]
  2. S.A. Kalogirou. Solar Energy Engineering – Processes and Systems. Second edi. Academic Press Inc. (2014) [Google Scholar]
  3. Daungthongsuk W, Ã SW. A critical review of convective heat transfer of nanofluids 11, 797–817 (2007) https://doi.org/10.1016/j.rser.2005.06.005. [Google Scholar]
  4. Natarajan E, Sathish R. Role of nanofluids in solar water heater 3–7 (2009) https://doi.org/10.1007/s00170-008-1876-8. [Google Scholar]
  5. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag 134, 103–15 (2017) https://doi.org/10.1016/j.enconman.2016.12.037. [CrossRef] [Google Scholar]
  6. Tong Y, Chi X, Kang W, Cho H. Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids. Appl Therm Eng 174 (2020) https://doi.org/10.1016/j.applthermaleng.2020.115346. [Google Scholar]
  7. Lee M, Shin Y, Cho H. Performance evaluation of flat plate and vacuum tube solar collectors by applying a MWCNT/Fe3O4 binary nanofluid. Energies 13 (2020) https://doi.org/10.3390/en13071715. [Google Scholar]
  8. Eltaweel M, Abdel-Rehim AA, Attia AAA. A comparison between flat-plate and evacuated tube solar collectors in terms of energy and exergy analysis by using nanofluid. Appl Therm Eng 186, 116516 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116516. [CrossRef] [Google Scholar]
  9. Sarsam WS, Kazi SN, Badarudin A. Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas. Appl Therm Eng 172, 115142 (2020) https://doi.org/10.1016/j.applthermaleng.2020.115142. [CrossRef] [Google Scholar]
  10. Liu S, Afan HA, Aldlemy MS, Al-Ansari N, Yaseen ZM. Energy analysis using carbon and metallic oxides-based nanomaterials inside a solar collector. Energy Reports 6, 1373–81 (2020). https://doi.org/10.1016/j.egyr.2020.05.015. [CrossRef] [Google Scholar]
  11. Kumar LH, Masjuki SNKHH, Afrin MNMZ, Oon J, Sean C. Experimental study on the effect of bio functionalized graphene nanoplatelets on the thermal performance of liquid flat plate solar collector American Society of Mechanical Engineers. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-020-10527-y. [Google Scholar]
  12. Kumar LH, Kazi SN, Masjuki HH, Zubir MNM, Jahan A, Bhinitha C. Energy , exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets. Appl Therm Eng 192, 116916 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116916. [CrossRef] [Google Scholar]
  13. Anin Vincely D, Natarajan E. Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation. Energy Convers Manag 117, 1–11 (2016). https://doi.org/10.1016/j.enconman.2016.03.015. [CrossRef] [Google Scholar]
  14. Alawi OA, Kamar HM, Mallah AR, Mohammed HA, Aizad M, Sabrudin S, et al. Graphene Nanoplatelets Suspended in Different Basefluids Based Solar Collector : An Experimental and Analytical Study 1–22 (2021). [Google Scholar]
  15. Ahmadi A, Ganji DD, Jafarkazemi F. Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Convers Manag 126, 1–11 (2016). https://doi.org/10.1016/j.enconman.2016.07.061. [CrossRef] [Google Scholar]
  16. Teng TP, Cheng CM, Pai FY. Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system. Nanoscale Res Lett 6, 1–11 (2011). https://doi.org/10.1186/1556-276X-6-293. [Google Scholar]
  17. Hong H, Waynick AJ, Roy W. Heat transfer nanolubricant and nanogrease based on carbon nanotube. NLGI Spokesm 71, 23–6 (2007). https://doi.org/10.1149/1.2408959. [Google Scholar]
  18. Verma SK, Tiwari AK, Tiwari S, Chauhan DS. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol Energy (2018). https://doi.org/10.1016/j.solener.2018.04.017. [Google Scholar]
  19. Sharma HK, Kumar S, Verma SK. Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs. Energy 253, 124137 (2022). https://doi.org/10.1016/j.energy.2022.124137. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.