Open Access
Issue |
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 23 | |
Section | Clean & Renewable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202448802019 | |
Published online | 06 February 2024 |
- A. Ahmed, A. K. Abdel-Rahman, M. Ahmed, and W. M. Khairaldien, Volume 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts a and B (2011) [Google Scholar]
- M. A. Al-Dabbas, The first pilot demonstration: solar updraft tower power plant in Jordan. International Journal of Sustainable Energy 31, 399 (2012) [CrossRef] [Google Scholar]
- M. A. Al-Dabbas, A performance analysis of solar chimney thermal power systems Thermal Science 15, 619 (2011) [CrossRef] [Google Scholar]
- S. S. Al-Azawie, S. Hassan, and M. F. Zammeri, Experimental and numerical study on ground material absorptivity for solar chimney power applications Ecology and the Environment (2014) [Google Scholar]
- H. H. Al-Kayiem, K. V. Sreejaya, and S. I. U. Gilani, Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney Energy and Buildings 68, 305 (2014) [CrossRef] [Google Scholar]
- S. S. Al-Azawie, S. Hassan, and M. F. Zammeri, Experimental and numerical study on ground material absorptivity for solar chimney power applications, Ecology and the Environment (2014) [Google Scholar]
- A. Arefian, A. Abbassi, and R. Hosseini, Exergy analysis and optimisation of collector dimensions in a solar chimney power plant using entropy generation minimisation method International Journal of Exergy 15, 328 (2014) [CrossRef] [Google Scholar]
- J. K. Afriyie, M. a. A. Nazha, H. Rajakaruna, and F. K. Forson, Experimental investigations of a chimney-dependent solar crop dryer, Renewable Energy 34, 217 (2009) [CrossRef] [Google Scholar]
- O. C. Aja, H. H. Al-Kayiem, and Z. A. A. Karim, Experimental investigation of the effect of wind speed and wind direction on a solar chimney power plant, Ecology and the Environment (2013) [Google Scholar]
- Azeemuddin, H. H. Al-Kayiem, and S. I. U. Gilani, Simulation of a collector using waste heat energy in a solar chimney power plant system, Ecology and the Environment (2013). [Google Scholar]
- M. A. D. S. Bernardes, T. W. Von Backström, and D. G. Kröger, Critical evaluation of heat transfer coefficients applicable to solar chimney power plant collectors , Springer eBooks, 1706–1713(2008). [Google Scholar]
- T Chitsomboon,. Potential and efficiency of solar chimney in the production of electrical energy. Research and Development Journal of the Engineering Institute of Thailand, 11(3), 38-44 (2000). [Google Scholar]
- T. Chitsomboon, A validated analytical model for flow in solar chimney. International Journal of Renewable Energy Engineering, 3(2), 339-346(2001).. [Google Scholar]
- Fluri, T. P. (2008). Comparison of modelling approaches and layouts for solar chimney turbineS, Solar Energy, 82(3), 239-246 (2018). [CrossRef] [Google Scholar]
- A. G. Ferreira, C. B. Maia, M. F. B. Cortez, and R. M. Valle, Technical feasibility assessment of a solar chimney for food drying, Solar Energy 82, 198 (2008) [CrossRef] [Google Scholar]
- M. Ghalamchi, A. Kasaeian, and M. Ghalamchi, Performance optimization of solar chimney power plant using electric/corona wind, Renewable & Sustainable Energy Reviews 43, 425 (2015) [CrossRef] [Google Scholar]
- A. J. Gannon and T. W. Von Backström, Cost analysis of solar chimney power plants, Journal of Solar Energy Engineering-Transactions of the Asme 122, 133 (2009) [Google Scholar]
- H. J. Guo, J. L. Li, and S. H. Huang, Case study of solar chimney power plants in Northwestern regions of China, Applied Mechanics and Materials 472, 276 (2014) [CrossRef] [Google Scholar]
- E. Gholamalizadeh and M.-H. Kim, Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model, Renewable Energy 63, 498 (2014) [CrossRef] [Google Scholar]
- E. Gholamalizadeh and M.-H. Kim, Thermo-economic triple-objective optimization of a solar chimney power plant using genetic algorithms, Energy 70, 204 (2014) [CrossRef] [Google Scholar]
- A. Koonsrisuk and T. Chitsomboon, Mathematical modeling of solar chimney power plants, Effects of flow area changes on the potential of solar chimney power plants, Energy 51, 400 (2013) [CrossRef] [Google Scholar]
- P. Guo, J. Li, and Y. Wang, Numerical simulations of solar chimney power plant with radiation model, Renewable Energy 62, 24 (2014). [CrossRef] [Google Scholar]
- A Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future, Renewable and sustainable energy reviews, 12(3), 593-661(2008). [CrossRef] [Google Scholar]
- A. Kasaeian, E. Heidari, and Sh. N. Vatan, Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant, Renewable & Sustainable Energy Reviews 15, 5202 (2011). [CrossRef] [Google Scholar]
- A. Kasaeian, E. Heidari, and Sh. N. Vatan, Modeling of the temperature changes in a solar chimney. In The Conference on Energy Management and Optimization, Tehran, Iran (pp. 326-332) (2010). [Google Scholar]
- R. Khanal and C. Lei, An experimental investigation of an inclined passive wall solar chimney for natural ventilation, Solar Energy 107, 461 (2014). [CrossRef] [Google Scholar]
- A. Koonsrisuk, A single dimensionless variable for solar chimney power plant modeling, Solar Energy 98, 78 (2013) [CrossRef] [Google Scholar]
- S. Larbi, A. Bouhdjar, and T. Chergui, Renewable & Sustainable Energy Reviews 14, 470 (2010) [CrossRef] [Google Scholar]
- Y. Li and S. Liu, Experimental study on thermal performance of a solar chimney combined with PCM, Applied Energy 114, 172 (2014) [CrossRef] [Google Scholar]
- W. Li, W. Ping, and X. Zhou, A cost-benefit analysis of power generation from commercial reinforced concrete solar chimney power plant, Energy Conversion and Management 79, 104 (2014) [CrossRef] [Google Scholar]
- S. Liu and Y. Li, Heating performance of a solar chimney combined PCM: a numerical case study, Energy and Buildings 99, 117 (2015) [CrossRef] [Google Scholar]
- Y. Li and S. Liu, Numerical study on thermal behaviors of a solar chimney incorporated with PCM, Energy and Buildings 80, 406 (2014) [CrossRef] [Google Scholar]
- B. Liu, X. Ma, X. Wang, C. Dang, Q. Wang, and R. Bennacer, Experimental study of the chimney effect in a solar hybrid double wall, Solar Energy 115, 1 (2015) [CrossRef] [Google Scholar]
- M. a. K. Lodhi, Application of helio-aero-gravity concept in producing energy and suppressing pollution, Energy Conversion and Management 40, 407 (1999). [CrossRef] [Google Scholar]
- C. B. Maia, A. G. Ferreira, R. M. Valle, and M. F. B. Cortez, Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney, Computers & Fluids 38, 625 (2009). [CrossRef] [Google Scholar]
- C. B. Maia, J. O. C. ilva, L. Cabezas‐Gómez,. De Morais Ha riot, a d A. G. Ferreira, Energy and exergy analysis of the airflow inside a solar chimney, Renewable & Sustainable Energy Reviews 27, 350 (2013) [CrossRef] [Google Scholar]
- T. Ming, X. Wang, R. De Richter, W. Liu, T. Wu, and Y. Pan, Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system, Renewable & Sustainable Energy Reviews 16, 5567 (2012) [CrossRef] [Google Scholar]
- T. Ming, F. Meng, W. Liu, Y. Pan, and R. De Richter, Chimney shape numerical study for solar chimney power generating systems, International Journal of Energy Research 37, 1657 (2012) [Google Scholar]
- T. Ming, W. Liu, Y. Pan, and G. Xu, Numerical analysis on the performance of solar chimney power plant system, Energy Conversion and Management 49, 2872 (2008). [CrossRef] [Google Scholar]
- Natarajan, R., Jayaraman, V., Dhanapal, B., & Sathyamurthy, R. (2020). experimental and computational studies on performance of a solar chimney power plant with semi-convergent collector and divergent chimney. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 73(11), 1586-1591. [Google Scholar]
- S. Nasirivatan, A. Kasaeian, M. Ghalamchi, and M. Ghalamchi, Performance optimization of solar chimney power plant using electric/corona wind, Journal of Electrostatics 78, 22 (2015) [CrossRef] [Google Scholar]
- Nižetić a d B. Klari, Applied Eergy, A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants, 87, 587 (2010) [Google Scholar]
- M. Najmi, A. M. Nazari, H. Mansouri, and G. Zahedi, Feasibility study on optimization of a typical solar chimney power plant, Heat and Mass Transfer 48, 475 (2011) [Google Scholar]
- N. Ni ić a d. Nižetić, Elementary theory of stationary vortex columns for solar chimney power plants, Solar Energy 83, 462 (2009) [CrossRef] [Google Scholar]
- S. Okada, T. Uchida, T. Karasudani, and Y. Ohya, Journal of Solar Energy Engineering-Transactions of the Asme 137, (2015) [CrossRef] [PubMed] [Google Scholar]
- F. N. Onyango and R. M. Ochieng, The potential of solar chimney for application in rural areas of developing countries, Fuel 85, 2561 (2006). [CrossRef] [Google Scholar]
- A. Koonsrisuk and T. Chitsomboon, Accuracy of theoretical models in the prediction of solar chimney performance, Solar Energy 83, 1764 (2009) [CrossRef] [Google Scholar]
- M. M. Padki and S. A. Sherif, On a simple analytical model for solar chimneys, International Journal of Energy Research 23, 345 (1999). [CrossRef] [Google Scholar]
- Pastohr, H., O. Kornadt and K. Gürlebeck, Numerical and analytical calculations of thetemperature and flow field in the upwind powerplant. Int. J. Energ. Res., 28(6): 495-510(2004). [CrossRef] [Google Scholar]
- J. P. Pretorius and D. G. Kröger, Sensitivity analysis of the operating and technical specifications of a solar chimney power plant, Journal of Solar Energy Engineering-Transactions of the Asme 129, 171 (2006) [Google Scholar]
- S. V. Panse, A. Jadhav, A. S. Gudekar, and J. B. Joshi, Inclined solar chimney for power production, Energy Conversion and Management 52, 3096 (2011) [CrossRef] [Google Scholar]
- S. Patel, D. Prasad, and M. R. Ahmed, Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant , Energy Conversion and Management 77, 424 (2014). [CrossRef] [Google Scholar]
- Papageorgiou, C. D. Optimum design for solar power stations with floating solar chimneys. In Proceedings of the 32nd national heat transfer conference Kwangju, Korea,763-772,(2004). [Google Scholar]
- C. D. Papageorgiou, M. Psalidas, and S. Sotiriou, Floating solar chimney with multi-pole generators, International Conference on Power and Energy Systems - IASTED (2011). [Google Scholar]
- N. Pasumarthi and S. Sherif Performance of ademonstration solar chimney model for powergeneration. California state univ, sacramento,ca,(USA). 203-240(1997) [Google Scholar]
- P. Das and V. P. Chandramohan, CFD analysis on flow and performance parameters estimation of solar updraft tower (SUT) plant varying its geometrical configurations Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40, 1532 (2018) [CrossRef] [Google Scholar]
- P. Das and V. P. Chandramohan, 3D numerical study on estimating flow and performance parameters of solar updraft tower (SUT) plant: Impact of divergent angle of chimney, ambient temperature, solar flux and turbine efficiency Journal of Cleaner Production , 45, 17159 (2020). [Google Scholar]
- P. Das and V. P. Chandramohan, Experimental studies of a laboratory scale inclined collector solar updraft tower plant with thermal energy storage system, Journal of Building Engineering 41, 102394 (2021) [CrossRef] [Google Scholar]
- S. R. Keshari, V. P. Chandramohan, and P. Das, A 3D numerical study to evaluate optimum collector inclination angle of Manzanares solar updraft tower power plant Solar Energy 226, 455 (2021). [CrossRef] [Google Scholar]
- A. R. Shahreza and H. Imani, Experimental and numerical investigation on an innovative solar chimney, Energy Conversion and Management 95, 446 (2015) [CrossRef] [Google Scholar]
- R. Sangi, M. Amidpour, and B. Hosseinizadeh, Modeling and numerical simulation of solar chimney power plants, Solar Energy 85, 829 (2011) [CrossRef] [Google Scholar]
- J. Schlaich, R. Bergermann, W. Schiel, and G. Weinrebe, Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation , Journal of Solar Energy Engineering-Transactions of the Asme 127, 117 (2005) [CrossRef] [Google Scholar]
- T. Ming, W. Liu, X. Guoling, Y. Xiong, X. Guan, and Y. Pan, Numerical simulation of the solar chimney power plant systems coupled with turbine, Renewable Energy 33, 897 (2008) [CrossRef] [Google Scholar]
- T. Ming, W. Liu, and G. Xu, Chimney shape numerical study for solar chimney power generating systems, International Journal of Energy Research 30, 861 (2006) [CrossRef] [Google Scholar]
- White, F. M. (1979). Fluid mechanics. Tata McGraw-Hill Education; 2003. [Google Scholar]
- G. Xu, T. Ming, Y. Pan, F. Meng, and C. Zhou, Numerical analysis on the performance of solar chimney power plant system, Energy Conversion and Management 52, 876 (2011) [CrossRef] [Google Scholar]
- X. Zhou and J. Yang, Temperature field of solar collector and application potential of solar chimney power systems in China, Journal of the Energy Institute 81, 25 (2008) [CrossRef] [Google Scholar]
- X. Zhou, J. Yang, B. Xiao, and G. Hou, Experimental study of temperature field in a solar chimney power setup, Applied Thermal Engineering 27, 2044 (2007). [CrossRef] [Google Scholar]
- K. Zhang, X. Zhang, S. Li, and G. Wang, Energy Procedia 48, 1047 (2014) [CrossRef] [Google Scholar]
- L. Zuo, Y. Zheng, Y. Sha, B. Qu, Z. You, Z. Huang, X. Xu, and T. Wei, International Conference on Sustainable Power Generation and Supply - IEEE (2009) [Google Scholar]
- L. Zuo, Y. Zheng, Z. Li, and Y. Sha, Solar chimneys integrated with sea water desalination, Desalination 276, 207 (2011) [CrossRef] [Google Scholar]
- X. Zhou, J. Yang, F. Wang, and B. Xiao, ). Economic analysis of power generation from floating solar chimney power plant, Renewable & Sustainable Energy Reviews 13, 736 (2009) [CrossRef] [Google Scholar]
- X. Zhou, J. Yang, J. Wang, and B. Xiao, Novel concept for producing energy integrating a solar collector with a man made mountain hollow, Energy Conversion and Management 50, 847 (2009) [CrossRef] [Google Scholar]
- X. Zhou and J. Yang, A novel solar thermal power plant with floating chimney stiffened onto a mountainside and potential of the power generation in China's deserts, Heat Transfer Engineering 30, 400 (2009) [CrossRef] [Google Scholar]
- X. Zhou, J. Yang, B. Xiao, and X. Shi, ). Special climate around a commercial solar chimney power plant, Journal of Energy Engineering-Asce 134, 6 (2008) [CrossRef] [Google Scholar]
- X. Zhou, M. A. D. S. Bernardes, and R. M. Ochieng, Influence of atmospheric cross flow on solar updraft tower inflow, Energy 42, 393 (2012) [CrossRef] [Google Scholar]
- X. Zhou, J. Yang, B. Xiao, G. Hou, and Y. Wu, Numerical investigation of a compressible flow through a solar chimney, Heat Transfer Engineering 30, 670 (2009) [CrossRef] [Google Scholar]
- X. Zhou, J. Yang, B. Xiao, G. Hou, and X. Fang, Analysis of chimney height for solar chimney power plant, Applied Thermal Engineering 29, 178 (2009) [CrossRef] [Google Scholar]
- C Subramaniyan, KB Prakash, B Kalidasan, N Bhvaeshad A Amarkarthik, “Exergy Analysis on Performance of Groundnut Solar Dryer with Forced Convection”, IOP Conference Series: Materials Science and Engineering, 1059 012056, (2021) [Google Scholar]
- Chinnasamy Subramaniyan, Jothirathinam Subramani, Balasubramanian Kalidasan, Natarajan Anbuselvan, Thangaraj Yuvaraj, Natarajan Prabaharan, Tomonobu Senjyu, Investigation on the optical design and performance of a single-axis-tracking solar parabolic trough collector with a secondary reflector, Sustainability, 13(17), 9918, (2021) [CrossRef] [Google Scholar]
- Subramaniyan Chinnasamy, KB Prakash, B Kalidasan, Arivazhagan Sampathkumar, Solar-air source heat pump water heater for scorching climatic condition: energy, exergy, economic and enviroeconomic (4E) exploration for sustainable future, Applied Thermal Engineering, Volume 240, 122212, (2024) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.