Open Access
Issue
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
Article Number 03009
Number of page(s) 13
Section Green Buildings; Carbon Capture & Recycling of Energy Materials
DOI https://doi.org/10.1051/e3sconf/202448803009
Published online 06 February 2024
  1. Vishal V, Chandra D, Singh U, Verma Y. Understanding initial opportunities and key challenges for CCUS deployment in India at scale. Resour Conserv Recycl 2021;175. https://doi.org/10.1016/j.resconrec.2021.105829. [Google Scholar]
  2. Chen S, Liu J, Zhang Q, Teng F, McLellan BC. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renewable and Sustainable Energy Reviews 2022;167. https://doi.org/10.1016/j.rser.2022.112537. [Google Scholar]
  3. Hazra B, Vishal V, Sethi C, Chandra D. Impact of Supercritical CO2on Shale Reservoirs and Its Implication for CO2Sequestration. Energy and Fuels 2022. https://doi.org/10.1021/acs.energyfuels.2c01894. [Google Scholar]
  4. English JM, English KL. An overview of carbon capture and storage and its potential role in the energy transition. First Break 2022;40:35–40. https://doi.org/10.3997/1365-2397.fb2022028. [Google Scholar]
  5. Askarova A, Mukhametdinova A, Markovic S, Khayrullina G, Afanasev P, Popov E, et al. An Overview of Geological CO2 Sequestration in Oil and Gas Reservoirs. Energies (Basel) 2023;16. https://doi.org/10.3390/en16062821. [Google Scholar]
  6. Javadpour F, Fisher D, Unsworth M. Nanoscale Gas Flow in Shale Gas Sediments 2007;46:55. https://doi.org/10.2118/07-10-06. [Google Scholar]
  7. Yang Y, Liu S. Review of shale gas sorption and its models. Energy and Fuels 2020;34:15502–24. https://doi.org/10.1021/acs.energyfuels.0c02906. [CrossRef] [Google Scholar]
  8. Middleton R, Viswanathan H, Currier R, Gupta R. CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration. Energy Procedia, vol. 63, Elsevier Ltd; 2014, p. 7780–4. https://doi.org/10.1016/j.egypro.2014.11.812. [CrossRef] [Google Scholar]
  9. Zhou L, Bai S, Su W, Yang J, Zhou Y. Comparative study of the excess versus absolute adsorption of CO2 on superactivated carbon for the near-critical region. Langmuir 2003;19:2683–90. https://doi.org/10.1021/la020682z. [CrossRef] [Google Scholar]
  10. Perera MSA, Ranjith PG, Airey DW, Choi SK. Sub- and super-critical carbon dioxide flow behavior in naturally fractured black coal: An experimental study. Fuel 2011;90:3390–7. https://doi.org/10.1016/j.fuel.2011.05.016. [CrossRef] [Google Scholar]
  11. Zhang T, Ellis GS, Ruppel SC, Milliken K, Yang R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem 2012;47:120–31. https://doi.org/10.1016/j.orggeochem.2012.03.012. [CrossRef] [Google Scholar]
  12. Yang J, Lian H, Liang W, Nguyen VP, Chen Y. Experimental investigation of the effects of supercritical carbon dioxide on fracture toughness of bituminous coals. International Journal of Rock Mechanics and Mining Sciences 2018;107:233–42. https://doi.org/10.1016/j.ijrmms.2018.04.033. [CrossRef] [Google Scholar]
  13. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010;156:2–10. https://doi.org/10.1016/j.cej.2009.09.013. [CrossRef] [Google Scholar]
  14. Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Science of the Total Environment 2022;812. https://doi.org/10.1016/j.scitotenv.2021.151334. [Google Scholar]
  15. Fakher S, Imqam A. A review of carbon dioxide adsorption to unconventional shale rocks methodology, measurement, and calculation. SN Appl Sci 2020;2. https://doi.org/10.1007/s42452-019-1810-8. [Google Scholar]
  16. Jin Z, Firoozabadi A. Thermodynamic modeling of phase behavior in Shale media. SPE Journal 2016;21:190–207. https://doi.org/10.2118/176015-PA. [CrossRef] [Google Scholar]
  17. Le TD, Murad MA, Pereira PA. A new matrix/fracture multiscale coupled model for flow in shale-gas reservoirs. SPE Journal 2017;22:265–88. https://doi.org/10.2118/181750-PA. [CrossRef] [Google Scholar]
  18. Yu W, Sepehrnoori K, Patzek TW. Modeling gas adsorption in marcellus shale with langmuir and bet isotherms. SPE Journal, vol. 21, Society of Petroleum Engineers (SPE); 2016, p. 589–600. https://doi.org/10.2118/170801-PA. [CrossRef] [Google Scholar]
  19. Zhai Z, Wang X, Jin X, Sun L, Li J, Cao D. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths. Energy Fuels 2014;28(12):7467-7473. https://doi.org/10.1021/ef5023434. [CrossRef] [Google Scholar]
  20. Fianu J, Gholinezhad J, Hassan M. Comparison of temperature-dependent gas adsorption models and their application to shale gas reservoirs. Energy Fuels 2018;32(4):4763-4771. https://doi.org/10.1021/acs.energyfuels.8b00017. [CrossRef] [Google Scholar]
  21. Xing J, Hu S, Jiang Z, Wang X, Wang J, Sun L, Chen L. Classification of controlling factors and determination of a prediction model for shale gas adsorption capacity: A case study of Chang 7 shale in the Ordos Basin. J Nat Gas Sci Eng 2018;49:260-274. https://doi.org/10.1016/j.jngse.2017.11.015. [CrossRef] [Google Scholar]
  22. Xie W, Wang M, Vandeginste V, Chen S, Yu Z, Wang J, et al. Adsorption behavior and mechanism of CO2 in the Longmaxi shale gas reservoir. RSC Adv 2022;12:25947–54. https://doi.org/10.1039/d2ra03632k. [CrossRef] [PubMed] [Google Scholar]
  23. Zhou J, Liu M, Xian X, Jiang Y, Liu Q, Wang X. Measurements and modelling of CH4 and CO2 adsorption behaviors on shales: Implication for CO2 enhanced shale gas recovery. Fuel 2019;251:293–306. https://doi.org/10.1016/j.fuel.2019.04.041. [CrossRef] [Google Scholar]
  24. Alafnan S, Awotunde A, Glatz G, Adjei S, Alrumaih I, Gowida A. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. J Pet Sci Eng 2021;207. https://doi.org/10.1016/j.petrol.2021.109172. [Google Scholar]
  25. Aji AQM, et al. Supercritical methane adsorption measurement on shale using the isotherm modelling aspect. RSC Adv 2022;12:20530-20543. https://doi.org/10.1039/D2RA03367D. [CrossRef] [PubMed] [Google Scholar]
  26. Wang Y, Zhu Y, Liu S, Zhang R. Methane adsorption measurements and modeling for organic-rich marine shale samples. Fuel 2016;172:301-309. https://doi.org/10.1016/j.fuel.2015.12.074. [CrossRef] [Google Scholar]
  27. Zhou S, Zhang D, Wang H, Li X. A modified BET equation to investigate supercritical methane adsorption mechanisms in shale. Mar Pet Geol 2019;105:284-292. https://doi.org/10.1016/j.marpetgeo.2019.04.036. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.