Open Access
Issue
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
Article Number 03013
Number of page(s) 10
Section Green Buildings; Carbon Capture & Recycling of Energy Materials
DOI https://doi.org/10.1051/e3sconf/202448803013
Published online 06 February 2024
  1. A. Ihssian, K. Ismail, Modelling pedestrian safety at urban intersections using user perception, Accident Analysis & Prevention, 180, 106912, (2023) [CrossRef] [Google Scholar]
  2. X. Wang, C. Ye, M. Quddus, A. Morris, Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model, Accident Analysis & Prevention, 192, 107265, (2023) [CrossRef] [Google Scholar]
  3. F. W. Siebert, M. Møller, A. Moe Moe Lwin, D. Albers, Illusion of safety? Safety-related perceptions of pedestrians and car drivers around 3D crosswalks, Transportation Research Part F: Traffic Psychology and Behaviour, 91, Pages 213-222, (2022) [CrossRef] [Google Scholar]
  4. Z. Meng, S. Zhao, H. Chen, M. Hu, Y. Tang and Y. Song, The Vehicle Testing Based on Digital Twins Theory for Autonomous Vehicles, in IEEE Journal of Radio Frequency Identification, 6, pp. 710-714, (2022) [CrossRef] [Google Scholar]
  5. X. Cai and X. Ding, A comparative study of machine vision-based rail foreign object intrusion detection models, 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), pp. 1304-1308, Shenyang, China (2023) [Google Scholar]
  6. S. Iftikhar, Z. Zhang, M. Asim, A. Muthanna, A. Koucheryavy, A. A. Abd El-Latif, Deep Learning-Based Pedestrian Detection in Autonomous Vehicles: Substantial Issues and Challenges, Electronics (2022) [Google Scholar]
  7. M. A. Malbog, MASK R-CNN for Pedestrian Crosswalk Detection and Instance Segmentation, 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), pp. 1-5, Kuala Lumpur, Malaysia (2019) [Google Scholar]
  8. J. A. B. Susa, R. R. Maaliw, C. M. C. Ceribo, J. Macalisang and B. C. Fabro, An Efficient Safety and Authorized Helmet Detection Using Deep Learning Approach, 2022 International Conference on Smart Information Systems and Technologies (SIST), pp. 1-5, Nur-Sultan, Kazakhstan (2022) [Google Scholar]
  9. M. A. F. Malbog, R. I. Marasigan, J. N. Mindoro, M. D. Nipas and J. S. Gulmatico, MEDSCANLATION: A Deep Learning-Based AI Scanner and Translation Device for Doctor's Prescription Medicine, 2022 IEEE 13th Control and System Graduate Research Colloquium (ICSGRC), pp. 198-203, Shah Alam, Malaysia (2022) [Google Scholar]
  10. M. Kalinina & P. Nikolaev, Research of YOLO Architecture Models in Book Detection (2020) [Google Scholar]
  11. J. M. C. Manalo, A. S. Alon, Y. D. Austria, N. E. Merencilla, M. A. Misola and R. C. Sandil, A Transfer Learning-Based System of Pothole Detection in Roads through Deep Convolutional Neural Networks, 2022 International Conference on Decision Aid Sciences and Applications (DASA), pp. 1469-1473, Chiangrai, Thailand (2022) [Google Scholar]
  12. J. Obermann & J. Kovanda, Pedestrian Detection, Transactions on Transport Sciences (2009) [Google Scholar]
  13. M. Karthi, V. Muthulakshmi, R. Priscilla, P. Praveen and K. Vanisri, Evolution of YOLO-V5 Algorithm for Object Detection: Automated Detection of Library Books and Performace validation of Dataset, 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), pp. 1-6, Chennai, India (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.