Open Access
Issue
E3S Web of Conf.
Volume 488, 2024
1st International Conference on Advanced Materials & Sustainable Energy Technologies (AMSET2023)
Article Number 03021
Number of page(s) 29
Section Green Buildings; Carbon Capture & Recycling of Energy Materials
DOI https://doi.org/10.1051/e3sconf/202448803021
Published online 06 February 2024
  1. Vlad, C., et al., Evaluation of clinical, morphopathological and therapeutic prognostic factors in rectal cancer. Experience of a tertiary oncology center. J BUON, 2015. 20(1): p. 92-99. [Google Scholar]
  2. Jurj, A., et al., The new era of nanotechnology, an alternative to change cancer treatment. Drug design, development and therapy, 2017. 11: p. 2871. [CrossRef] [Google Scholar]
  3. Mattiuzzi, C. and G. Lippi, Current cancer epidemiology. Journal of epidemiology and global health, 2019. 9(4): p. 217-222. [CrossRef] [Google Scholar]
  4. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2018. 68(6): p. 394-424. [CrossRef] [PubMed] [Google Scholar]
  5. Thun, M.J., et al., The global burden of cancer: priorities for prevention. Carcinogenesis, 2010. 31(1): p. 100-110. [CrossRef] [PubMed] [Google Scholar]
  6. Stewart, B.W. and P. Kleihues, World cancer report. 2003. [Google Scholar]
  7. The Costs of Cancer. 2020, The American Cancer Society Cancer Action Network. [Google Scholar]
  8. Siqueira, A.d.S.E., et al., Economic impact analysis of cancer in the health system of Brazil: model based in public database. Health Science Journal, 2017. 11(4): p. 1. [Google Scholar]
  9. Knaul, F.M., et al., Investing in cancer care and control. Closing the cancer divide: an equity imperative, 2012: p. 71-92. [Google Scholar]
  10. Wang, J., K. Lei, and F. Han, Tumor microenvironment: recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci, 2018. 22: p. 3855-3864. [Google Scholar]
  11. Pucci, C., C. Martinelli, and G. Ciofani, Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 13. [Google Scholar]
  12. Goldberg, M.S., Improving cancer immunotherapy through nanotechnology. Nature Reviews Cancer, 2019. 19(10): p. 587-602. [CrossRef] [PubMed] [Google Scholar]
  13. Sundaram, A., et al., Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020. 8(23): p. 4990-5013. [CrossRef] [PubMed] [Google Scholar]
  14. Ok, C.Y., B.A. Woda, and E. Kurian, The Pathology of Cancer. 2018. [Google Scholar]
  15. Hassanpour, S.H. and M. Dehghani, Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 2017. 4(4): p. 127-129. [CrossRef] [Google Scholar]
  16. Davidson, M.R., A.F. Gazdar, and B.E. Clarke, The pivotal role of pathology in the management of lung cancer. Journal of thoracic disease, 2013. 5(Suppl 5): p. S463. [PubMed] [Google Scholar]
  17. Miettinen, M., et al., New fusion sarcomas: histopathology and clinical significance of selected entities. Human pathology, 2019. 86: p. 57-65. [CrossRef] [PubMed] [Google Scholar]
  18. Hasanov, E., et al., T-cell large granular lymphocytic leukaemia in the context of rheumatoid arthritis. The Lancet, 2018. 392(10152): p. 1071. [CrossRef] [Google Scholar]
  19. Randall, C. and Y. Fedoriw, Pathology and diagnosis of follicular lymphoma and related entities. Pathology, 2020. 52(1): p. 30-39. [CrossRef] [PubMed] [Google Scholar]
  20. Aung, P.P., P. Nagarajan, and V.G. Prieto, Regression in primary cutaneous melanoma: etiopathogenesis and clinical significance. Laboratory Investigation, 2017. 97(6): p. 657-668. [CrossRef] [Google Scholar]
  21. Humagain, S. cancer ,its types and causes. feburaray 26, 2019 [cited 2021 28 march]; Available from: https://onlinesciencenotes.com/cancer-its-types-and-causes/. [Google Scholar]
  22. Cassidy, J., et al., Oxford handbook of oncology. 2015: OUP Oxford. 897. [Google Scholar]
  23. Baskar, R., et al., Cancer and radiation therapy: current advances and future directions. International journal of medical sciences, 2012. 9(3): p. 193. [CrossRef] [PubMed] [Google Scholar]
  24. Chaffer, C.L. and R.A. Weinberg, A perspective on cancer cell metastasis. Science, 2011. 331(6024): p. 1559-1564. [Google Scholar]
  25. Haward, R., et al., Breast cancer teams: the impact of constitution, new cancer workload, and methods of operation on their effectiveness. British journal of cancer, 2003. 89(1): p. 15-22. [CrossRef] [PubMed] [Google Scholar]
  26. medi, m. Types of cancer treatment. Jun 4, 2019 [cited 2021 28 March 2021]; Available from: https://medium.com/@magnusmediindia/types-of-cancer-treatment-b208266a69ab. [Google Scholar]
  27. Coffey, J.C., et al., Excisional surgery for cancer cure: therapy at a cost. The lancet oncology, 2003. 4(12): p. 760-768. [CrossRef] [PubMed] [Google Scholar]
  28. Fisher, B., Biological research in the evolution of cancer surgery: a personal perspective. Cancer research, 2008. 68(24): p. 10007-10020. [CrossRef] [PubMed] [Google Scholar]
  29. Zucker, B., et al., Suture choice to reduce occurrence of surgical site infection, hernia, wound dehiscence and sinus/fistula: a network meta-analysis. The Annals of The Royal College of Surgeons of England, 2019. 101(3): p. 150-161. [CrossRef] [PubMed] [Google Scholar]
  30. Takimoto, C.H. and E. Calvo, Principles of oncologic pharmacotherapy. 2007. [Google Scholar]
  31. Nurgali, K., R.T. Jagoe, and R. Abalo, Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Frontiers in pharmacology, 2018. 9: p. 245. [CrossRef] [PubMed] [Google Scholar]
  32. Bukowski, K., M. Kciuk, and R. Kontek, Mechanisms of multidrug resistance in cancer chemotherapy. International journal of molecular sciences, 2020. 21(9): p. 3233. [CrossRef] [PubMed] [Google Scholar]
  33. Juthi, A.Z., et al., Theranostic applications of smart nanomedicines for tumor-targeted chemotherapy: a review. Environmental Chemistry Letters, 2020. 18: p. 1509-1527. [CrossRef] [Google Scholar]
  34. Schirrmacher, V., From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International journal of oncology, 2019. 54(2): p. 407-419. [Google Scholar]
  35. Lyman, G.H., Oxford American Handbook of Oncology. 2015: Oxford University Press. [Google Scholar]
  36. Christ, G., C. Messner, and L. Behar, Handbook of oncology social work: Psychosocial care for people with cancer. 2015: Oxford University Press. [Google Scholar]
  37. Chen, H.H. and M.T. Kuo, Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget, 2017. 8(37): p. 62742. [CrossRef] [PubMed] [Google Scholar]
  38. Baumann, M., et al., Radiation oncology in the era of precision medicine. Nature Reviews Cancer, 2016. 16(4): p. 234. [CrossRef] [PubMed] [Google Scholar]
  39. Morrison, R., et al., Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. Journal of oncology, 2011. 2011. [CrossRef] [Google Scholar]
  40. Wheldon, T. and J. O'donoghue, The radiobiology of targeted radiotherapy. International journal of radiation biology, 1990. 58(1): p. 1-21. [CrossRef] [PubMed] [Google Scholar]
  41. Zachariah, B., et al., Radiotherapy for cancer patients aged 80 and older: a study of effectiveness and side effects. International journal of radiation oncology, biology, physics, 1997. 39(5): p. 1125-1129. [CrossRef] [PubMed] [Google Scholar]
  42. Provan, D., et al., Oxford handbook of clinical haematology. 2015: OUP Oxford. [CrossRef] [Google Scholar]
  43. Iqbal, N. and N. Iqbal, Imatinib: a breakthrough of targeted therapy in cancer. Chemotherapy research and practice, 2014. 2014. [Google Scholar]
  44. Denduluri, N., et al., Selection of optimal adjuvant chemotherapy regimens for human epidermal growth factor receptor 2 (HER2)–negative and adjuvant targeted therapy for HER2-positive breast cancers: An American Society of Clinical Oncology guideline adaptation of the Cancer Care Ontario clinical practice guideline. Journal of Clinical Oncology, 2016. 34(20): p. 2416-2427. [CrossRef] [PubMed] [Google Scholar]
  45. Chen, E., Adoptive Cell Transfer and Chimeric Antigen Receptors. [Google Scholar]
  46. Chen, Z., et al., Application of DODMA and derivatives in cationic nanocarriers for gene delivery. Current Organic Chemistry, 2016. 20(17): p. 1813-1819. [CrossRef] [Google Scholar]
  47. Delaney, G., et al., The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence‐based clinical guidelines. Cancer: Interdisciplinary International Journal of the American Cancer Society, 2005. 104(6): p. 1129-1137. [Google Scholar]
  48. Chen, C.-C., et al., Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. Journal of Materials Chemistry B, 2020. 8(1): p. 65-77. [CrossRef] [PubMed] [Google Scholar]
  49. SOUZA, C.D.d., et al., New gold-198 nanoparticle synthesis to be used in cancer treatment. 2020. [Google Scholar]
  50. Kaur, M., et al., Boron nitride (10BN) a prospective material for treatment of cancer by boron neutron capture therapy (BNCT). Materials Letters, 2020. 259: p. 126832. [CrossRef] [Google Scholar]
  51. Dreaden, E.C., et al., Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic delivery, 2012. 3(4): p. 457-478. [CrossRef] [PubMed] [Google Scholar]
  52. Cheng, X., et al., Light‐triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Advanced materials, 2017. 29(6): p. 1604894. [CrossRef] [Google Scholar]
  53. Her, S., D.A. Jaffray, and C. Allen, Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews, 2017. 109: p. 84-101. [Google Scholar]
  54. Xiao, T., et al., Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. Biomaterials Science, 2013. 1(11): p. 1172-1180. [CrossRef] [PubMed] [Google Scholar]
  55. Huang, X., et al., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. 2007. [Google Scholar]
  56. Griffin, S., et al., Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 2018. 7(1): p. 3. [Google Scholar]
  57. Raab, C., et al., What are synthetic nanoparticles?(NanoTrust Dossier No. 002en–February 2011). [Google Scholar]
  58. Chugh, H., et al., Role of gold and silver nanoparticles in cancer nano-medicine. Artificial cells, nanomedicine, and biotechnology, 2018. 46(sup1): p. 1210-1220. [CrossRef] [Google Scholar]
  59. Liu, H., et al., Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials, 2020. 232: p. 119700. [CrossRef] [Google Scholar]
  60. Lan, M., et al., Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Research, 2017. 10(9): p. 3113-3123. [CrossRef] [Google Scholar]
  61. Liang, C., et al., Tumor metastasis inhibition by imaging‐guided photothermal therapy with single‐walled carbon nanotubes. Advanced materials, 2014. 26(32): p. 5646-5652. [CrossRef] [PubMed] [Google Scholar]
  62. Chernousova, S. and M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2013. 52(6): p. 1636-1653. [Google Scholar]
  63. Zhang, X.-F., et al., Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 2016. 17(9): p. 1534. [CrossRef] [PubMed] [Google Scholar]
  64. Patel, K.D., R.K. Singh, and H.-W. Kim, Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019. 6(3): p. 434-469. [Google Scholar]
  65. Calderón-Jiménez, B., et al., Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Frontiers in chemistry, 2017. 5: p. 6. [PubMed] [Google Scholar]
  66. Vittorio, O., V. Raffa, and A. Cuschieri, Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2009. 5(4): p. 424-431. [Google Scholar]
  67. Taghdisi, S.M., et al., Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. European journal of pharmaceutics and biopharmaceutics, 2011. 77(2): p. 200-206. [CrossRef] [PubMed] [Google Scholar]
  68. Abdolahad, M., et al., Vertically aligned multiwall-carbon nanotubes to preferentially entrap highly metastatic cancerous cells. Carbon, 2012. 50(5): p. 2010-2017. [CrossRef] [Google Scholar]
  69. Huang, Y.-P., et al., Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale research letters, 2013. 8(1): p. 1-11. [CrossRef] [PubMed] [Google Scholar]
  70. Yang, F., et al., Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. European journal of cancer, 2011. 47(12): p. 1873-1882. [CrossRef] [PubMed] [Google Scholar]
  71. Ji, S.-r., et al., Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2010. 1806(1): p. 29-35. [CrossRef] [Google Scholar]
  72. Wu, H., et al., Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014. 35(20): p. 5369-5380. [CrossRef] [PubMed] [Google Scholar]
  73. Zhou, F., et al., Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. Journal of biomedical optics, 2009. 14(2): p. 021009. [CrossRef] [PubMed] [Google Scholar]
  74. Faria, P.C.B.d., et al., Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8+ T cell response and protection against cancer. Nano letters, 2014. 14(9): p. 5458-5470. [CrossRef] [PubMed] [Google Scholar]
  75. Heister, E., et al., Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon, 2009. 47(9): p. 2152-2160. [CrossRef] [Google Scholar]
  76. Jawahar, N., E. Surendra, and K.R. Krishna, A review on carbon nanotubes: a novel drug carrier for targeting to cancer cells. Journal of Pharmaceutical Sciences and Research, 2015. 7(3): p. 141. [Google Scholar]
  77. Akita, H., et al., Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. Journal of controlled release, 2010. 143(3): p. 311-317. [CrossRef] [PubMed] [Google Scholar]
  78. Zhu, H., et al., Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014. 35(7): p. 2391-2400. [CrossRef] [PubMed] [Google Scholar]
  79. Yuba, E., et al., The application of pH-sensitive polymer-lipids to antigen delivery for cancer immunotherapy. Biomaterials, 2013. 34(22): p. 5711-5721. [CrossRef] [PubMed] [Google Scholar]
  80. Huang, W.C., P.J. Tsai, and Y.C. Chen, Multifunctional Fe3O4@ Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic‐resistant bacteria. Small, 2009. 5(1): p. 51-56. [Google Scholar]
  81. Nima, Z.A., et al., Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Scientific reports, 2014. 4: p. 4752. [CrossRef] [PubMed] [Google Scholar]
  82. Liu, X., et al., PEGylated Au@ Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS applied materials & interfaces, 2017. 9(1): p. 279-285. [CrossRef] [PubMed] [Google Scholar]
  83. Li, Y., et al., Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 2010. 5(8): p. 1161-1171. [CrossRef] [PubMed] [Google Scholar]
  84. Liu, K., et al., Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale, 2020. [Google Scholar]
  85. Phan, T.T.V., et al., An Up-To-Date Review on Biomedical Applications of Palladium Nanoparticles. Nanomaterials, 2020. 10(1): p. 66. [Google Scholar]
  86. Yin, C., et al., Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials, 2020. 232: p. 119684. [CrossRef] [PubMed] [Google Scholar]
  87. Chen, Q., et al., Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016. 98: p. 23-30. [CrossRef] [PubMed] [Google Scholar]
  88. Song, X., Q. Chen, and Z. Liu, Recent advances in the development of organic photothermal nano-agents. Nano Research, 2015. 8(2): p. 340-354. [Google Scholar]
  89. Saxena, U. and P. Goswami, Electrical and optical properties of gold nanoparticles: applications in gold nanoparticles-cholesterol oxidase integrated systems for cholesterol sensing. Journal of Nanoparticle Research, 2012. 14(4): p. 813. [Google Scholar]
  90. Aizpurua, J., et al., Optical properties of gold nanorings. Physical review letters, 2003. 90(5): p. 057401. [CrossRef] [PubMed] [Google Scholar]
  91. Kaur, S., et al., Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals. Applied physics letters, 2007. 91(2): p. 023120. [CrossRef] [Google Scholar]
  92. Vines, J.B., et al., Gold nanoparticles for photothermal cancer therapy. Frontiers in chemistry, 2019. 7: p. 167. [CrossRef] [PubMed] [Google Scholar]
  93. Huang, Y.-F., et al., Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 2008. 24(20): p. 11860-11865. [CrossRef] [PubMed] [Google Scholar]
  94. Liu, X., et al., Laser heating of metallic nanoparticles for photothermal ablation applications. AIP Advances, 2017. 7(2): p. 025308. [CrossRef] [Google Scholar]
  95. Chatterjee, D.K., P. Diagaradjane, and S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy. Therapeutic delivery, 2011. 2(8): p. 1001-1014. [CrossRef] [PubMed] [Google Scholar]
  96. Bardhan, R., et al., Theranostic nanoshells: from probe design to imaging and treatment of cancer. Accounts of chemical research, 2011. 44(10): p. 936-946. [CrossRef] [PubMed] [Google Scholar]
  97. Melancon, M.P., M. Zhou, and C. Li, Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Accounts of chemical research, 2011. 44(10): p. 947-956. [CrossRef] [PubMed] [Google Scholar]
  98. Ibarguren, M., D.J. López, and P.V. Escribá, The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014. 1838(6): p. 1518-1528. [CrossRef] [Google Scholar]
  99. Punnonen, J., et al., Cytokine Therapeutics in Cancer Immunotherapy: Design and Development. Current Pharmacology Reports, 2019. 5(5): p. 377-390. [CrossRef] [Google Scholar]
  100. Xiong, Z., et al., Zwitterion-functionalized dendrimer-entrapped gold nanoparticles for serum-enhanced gene delivery to inhibit cancer cell metastasis. Acta Biomaterialia, 2019. 99: p. 320-329. [CrossRef] [PubMed] [Google Scholar]
  101. Tímár, J., et al., Angiogenesis-dependent diseases and angiogenesis therapy. Pathology Oncology Research, 2001. 7(2): p. 85-94. [CrossRef] [PubMed] [Google Scholar]
  102. AshaRani, P., et al., Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome integrity, 2012. 3(1): p. 2. [CrossRef] [PubMed] [Google Scholar]
  103. AshaRani, P., et al., Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano, 2009. 3(2): p. 279-290. [CrossRef] [PubMed] [Google Scholar]
  104. Lin, J., et al., Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 2014. 10(11): p. 2006-2020. [CrossRef] [PubMed] [Google Scholar]
  105. Gurunathan, S., et al., Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. International journal of nanomedicine, 2015. 10: p. 4203. [CrossRef] [PubMed] [Google Scholar]
  106. Carlson, C., et al., Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The journal of physical chemistry B, 2008. 112(43): p. 13608-13619. [CrossRef] [PubMed] [Google Scholar]
  107. Ahamed, M., et al., DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and applied pharmacology, 2008. 233(3): p. 404-410. [CrossRef] [PubMed] [Google Scholar]
  108. De Matteis, V., et al., Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(3): p. 731-739. [CrossRef] [Google Scholar]
  109. Zuberek, M., et al., Glucose availability determines silver nanoparticles toxicity in HepG2. Journal of nanobiotechnology, 2015. 13(1): p. 72. [CrossRef] [PubMed] [Google Scholar]
  110. Thevenot, P., et al., Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2008. 4(3): p. 226-236. [CrossRef] [Google Scholar]
  111. Pešić, M., et al., Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chemico-biological interactions, 2015. 232: p. 85-93. [CrossRef] [PubMed] [Google Scholar]
  112. Ali, D., et al., Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell biochemistry and biophysics, 2015. 71(3): p. 1643-1651. [CrossRef] [PubMed] [Google Scholar]
  113. Sharma, A., A.K. Goyal, and G. Rath, Recent advances in metal nanoparticles in cancer therapy. Journal of drug targeting, 2018. 26(8): p. 617-632. [Google Scholar]
  114. Eklund, P., J. Rosen, and P.O.Å. Persson, Layered ternary M n+ 1AX n phases and their 2D derivative MXene: an overview from a thin-film perspective. Journal of Physics D: Applied Physics, 2017. 50(11): p. 113001. [CrossRef] [Google Scholar]
  115. Szuplewska, A., et al., Multilayered stable 2D nano-sheets of Ti 2 NT x MXene: synthesis, characterization, and anticancer activity. Journal of nanobiotechnology, 2019. 17(1): p. 1-14. [CrossRef] [PubMed] [Google Scholar]
  116. Chen, Y., L. Wang, and J. Shi, Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today, 2016. 11(3): p. 292-308. [Google Scholar]
  117. Lin, H., et al., A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 2017. 139(45): p. 16235-16247. [CrossRef] [PubMed] [Google Scholar]
  118. Lin, H., et al., Theranostic 2D tantalum carbide (MXene). Advanced materials, 2018. 30(4): p. 1703284. [CrossRef] [Google Scholar]
  119. Chen, J., et al., CO 2 and temperature dual responsive “Smart” MXene phases. Chemical Communications, 2015. 51(2): p. 314-317. [CrossRef] [PubMed] [Google Scholar]
  120. Ryder, C.R., et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature chemistry, 2016. 8(6): p. 597-602. [CrossRef] [PubMed] [Google Scholar]
  121. Ide, T., et al., Soybean phospholipid dependent reductions in triacylglycerol concentration and synthesis in the liver of fasted-refed rats. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1992. 1124(2): p. 163-170. [CrossRef] [Google Scholar]
  122. Gogotsi, Y. and B. Anasori, The rise of MXenes. 2019, ACS Publications. [Google Scholar]
  123. Cheng, L., et al., 2D nanomaterials for cancer theranostic applications. Advanced Materials, 2020. 32(13): p. 1902333. [CrossRef] [Google Scholar]
  124. Champagne, A. and J.-C. Charlier, Physical properties of 2D MXenes: from a theoretical perspective. Journal of Physics: Materials, 2020. 3(3): p. 032006. [Google Scholar]
  125. Jiang, X., et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Physics Reports, 2020. 848: p. 1-58. [CrossRef] [Google Scholar]
  126. Lashgari, H., et al., Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid state communications, 2014. 195: p. 61-69. [CrossRef] [Google Scholar]
  127. Bai, Y., et al., Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: a first-principles study. RSC Advances, 2016. 6(42): p. 35731-35739. [CrossRef] [Google Scholar]
  128. Zhang, Y. and F. Li, Robust half-metallic ferromagnetism in Cr3C2 MXene. Journal of Magnetism and Magnetic Materials, 2017. 433: p. 222-226. [CrossRef] [Google Scholar]
  129. Ingason, A.S., M. Dahlqvist, and J. Rosén, Magnetic MAX phases from theory and experiments; a review. Journal of Physics: Condensed Matter, 2016. 28(43): p. 433003. [CrossRef] [PubMed] [Google Scholar]
  130. Liang, Y., et al., Theoretical prediction of two-dimensional functionalized MXene nitrides as topological insulators. Physical Review B, 2017. 96(19): p. 195414. [CrossRef] [Google Scholar]
  131. Tian, W., et al., The property, preparation and application of topological insulators: a review. Materials, 2017. 10(7): p. 814. [CrossRef] [PubMed] [Google Scholar]
  132. Peng, Q., et al., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 2014. 136(11): p. 4113-4116. [CrossRef] [PubMed] [Google Scholar]
  133. Shahzad, A., et al., Two-dimensional Ti3C2T x MXene nanosheets for efficient copper removal from water. ACS Sustainable Chemistry & Engineering, 2017. 5(12): p. 11481-11488. [CrossRef] [Google Scholar]
  134. Zhang, C., et al., Reactive Oxygen Species‐Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021. 8(3): p. 2002797. [CrossRef] [Google Scholar]
  135. Jastrzębska, A., et al., In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. Journal of hazardous materials, 2017. 339: p. 1-8. [CrossRef] [PubMed] [Google Scholar]
  136. Mariani, S., et al. POROUS SILICON BASED NANOTECHNOLOGY FOR OPTICAL BIOSENSORS. in Secondo Workshop Gruppo Biosensori Ottici e Biofotonica. 2013. [Google Scholar]
  137. Myszka, D.G., Improving biosensor analysis. Journal of molecular recognition, 1999. 12(5): p. 279-284. [CrossRef] [PubMed] [Google Scholar]
  138. Rakhi, R., et al., Novel amperometric glucose biosensor based on MXene nanocomposite. Scientific reports, 2016. 6(1): p. 1-10. [CrossRef] [Google Scholar]
  139. Wang, F., et al., An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. Journal of The Electrochemical Society, 2014. 162(1): p. B16. [Google Scholar]
  140. Ma, Y., et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature communications, 2017. 8(1): p. 1-8. [CrossRef] [PubMed] [Google Scholar]
  141. Fang, Y., et al., Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sensors and Actuators B: Chemical, 2018. 263: p. 400-407. [CrossRef] [Google Scholar]
  142. Zhou, L., et al., Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochemical Engineering Journal, 2017. 128: p. 243-249. [CrossRef] [Google Scholar]
  143. Xue, Q., et al., Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Advanced materials, 2017. 29(15): p. 1604847. [CrossRef] [Google Scholar]
  144. Huang, H., et al., A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging. Materials Science and Engineering: C, 2018. 91: p. 631-637. [CrossRef] [Google Scholar]
  145. Lin, L., et al., Fabrication and luminescence of monolayered boron nitride quantum dots. Small, 2014. 10(1): p. 60-65. [CrossRef] [PubMed] [Google Scholar]
  146. Dai, C., et al., Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS nano, 2017. 11(12): p. 12696-12712. [CrossRef] [PubMed] [Google Scholar]
  147. Huang, H., et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale, 2020. 12(3): p. 1325-1338. [CrossRef] [PubMed] [Google Scholar]
  148. Kamalian, S., M.H. Lev, and R. Gupta, Computed tomography imaging and angiography–principles. Handbook of clinical neurology, 2016. 135: p. 3-20. [CrossRef] [Google Scholar]
  149. Caro, C., et al., Highly water-stable rare ternary Ag–Au–Se nanocomposites as long blood circulation time X-ray computed tomography contrast agents. Nanoscale, 2017. 9(21): p. 7242-7251. [CrossRef] [PubMed] [Google Scholar]
  150. Beard, P., Biomedical photoacoustic imaging. Interface focus, 2011. 1(4): p. 602-631. [CrossRef] [PubMed] [Google Scholar]
  151. Xia, J., J. Yao, and L.V. Wang, Photoacoustic tomography: principles and advances. Electromagnetic waves (Cambridge, Mass.), 2014. 147: p. 1. [Google Scholar]
  152. Curtis, C., et al., Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids and Surfaces B: Biointerfaces, 2018. 170: p. 673-682. [CrossRef] [Google Scholar]
  153. Liu, Z., et al., 2D magnetic titanium carbide MXene for cancer theranostics. Journal of Materials Chemistry B, 2018. 6(21): p. 3541-3548. [CrossRef] [PubMed] [Google Scholar]
  154. Li, Y., et al., MXene-Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Materials Science and Engineering: C, 2019. 104: p. 110000. [CrossRef] [Google Scholar]
  155. Han, X., et al., 2D ultrathin MXene‐based drug‐delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced healthcare materials, 2018. 7(9): p. 1701394. [CrossRef] [Google Scholar]
  156. Xing, C., et al., Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS applied materials & interfaces, 2018. 10(33): p. 27631-27643. [CrossRef] [PubMed] [Google Scholar]
  157. Liu, Y., et al., Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Materials Science and Engineering: C, 2020: p. 111212. [Google Scholar]
  158. Liu, G., et al., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS applied materials & interfaces, 2017. 9(46): p. 40077-40086. [CrossRef] [PubMed] [Google Scholar]
  159. Li, Z., et al., Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced materials, 2018. 30(25): p. 1706981. [CrossRef] [Google Scholar]
  160. Han, X., et al., Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018. 8(16): p. 4491. [CrossRef] [PubMed] [Google Scholar]
  161. Melamed, J.R., R.S. Edelstein, and E.S. Day, Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS nano, 2015. 9(1): p. 6-11. [Google Scholar]
  162. Lin, H., et al., Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano letters, 2017. 17(1): p. 384-391. [CrossRef] [PubMed] [Google Scholar]
  163. Gazzi, A., et al., Photodynamic therapy based on graphene and MXene in cancer theranostics. Frontiers in bioengineering and biotechnology, 2019. 7: p. 295. [CrossRef] [PubMed] [Google Scholar]
  164. Lin, H., Y. Chen, and J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Advanced Science, 2018. 5(10): p. 1800518. [Google Scholar]
  165. Suzuki-Karasaki, Y., et al., Depolarization controls TRAIL-sensitization and tumor-selective killing of cancer cells: crosstalk with ROS. Frontiers in oncology, 2014. 4: p. 128. [CrossRef] [PubMed] [Google Scholar]
  166. Zhao, S., et al., Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Frontiers in Physiology, 2020. 11: p. 571810-571810. [CrossRef] [PubMed] [Google Scholar]
  167. Farokhzad, O.C., et al., Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences, 2006. 103(16): p. 6315-6320. [CrossRef] [PubMed] [Google Scholar]
  168. Gu, F., et al., Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences, 2008. 105(7): p. 2586-2591. [CrossRef] [PubMed] [Google Scholar]
  169. Nel, A.E., et al., Understanding biophysicochemical interactions at the nano–bio interface. Nature materials, 2009. 8(7): p. 543-557. [CrossRef] [PubMed] [Google Scholar]
  170. Ernsting, M.J., et al., Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of controlled release, 2013. 172(3): p. 782-794. [CrossRef] [PubMed] [Google Scholar]
  171. Karnik, R., et al., Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano letters, 2008. 8(9): p. 2906-2912. [CrossRef] [PubMed] [Google Scholar]
  172. Kumar, N. and S. Kumbhat, Essentials in nanoscience and nanotechnology. 2016. [Google Scholar]
  173. Rolland, J.P., et al., Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. Journal of the American Chemical Society, 2005. 127(28): p. 10096-10100. [CrossRef] [PubMed] [Google Scholar]
  174. Xu, J., et al., Future of the particle replication in nonwetting templates (PRINT) technology. Angewandte Chemie International Edition, 2013. 52(26): p. 6580-6589. [CrossRef] [PubMed] [Google Scholar]
  175. Toh, Y.-C., et al., A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab on a Chip, 2009. 9(14): p. 2026-2035. [CrossRef] [PubMed] [Google Scholar]
  176. Albanese, A., et al., Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nature communications, 2013. 4(1): p. 1-8. [CrossRef] [Google Scholar]
  177. Navya, P., et al., Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 2019. 6(1): p. 23. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.