Open Access
Issue
E3S Web of Conf.
Volume 490, 2024
5th International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2023)
Article Number 03007
Number of page(s) 8
Section Ecological Environment Restoration and Pollution Control
DOI https://doi.org/10.1051/e3sconf/202449003007
Published online 14 February 2024
  1. R. B. Schlesinger, Kunzli, N. Jerrett. M. The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhal. Tox. 18(2), 95-125 (2006) [CrossRef] [PubMed] [Google Scholar]
  2. I.C. Ossai, A. Ahmed, A. Hassan Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Envir. Tech. Inno. 17, 100526 (2020). [CrossRef] [Google Scholar]
  3. M. Clausi, S. Savino, F. Cangialosi, G. Eramo, G. Fornaro, Pollutants abatement in aqueous solutions with geopolymer catalysts: A photo fenton case. Chemos. 344, 140333 (2023). [CrossRef] [Google Scholar]
  4. Z. Rehman, Trends and Challenges of Technology-Enhanced Learning in Geotechnical Engineering Education. Sustainability. 15(10), 7972 (2023). [CrossRef] [Google Scholar]
  5. N. Ijaz, Y. E. Weimin, Z. Rehman, I. Zain M. F. Junaid. Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Science of The Total Environment. 907, 167794(2023). [Google Scholar]
  6. Z. Q. Zhang, X. Yang, Y. Li, Monitoring and Analysis of Septic Tank Influent and Effluent Quality in Chongqing Urban Residential Communities. China Water. Wastew. 39(11):82-89 (2023). [Google Scholar]
  7. X. Yang, The Discharge Characteristics and Influence Factors of Domestic Wastewater in Residential Communities in the Main Urban Area of Chongqing. Chongqing University (2020). [Google Scholar]
  8. C. Wang, B. Feng, P. Wang, W. Guo, X. Li, Revealing factors influencing spatial variation in the quantity and quality of rural domestic sewage discharge across China. Process Saf. Environ. Prot., 162, 200-210 (2022). [CrossRef] [Google Scholar]
  9. L. Wei, J. Li, Y. Chen, Effect of public construction, septic tank, and pipeline transmission on the water quality of urban sewage. Water & Wastewater Eng., 56(S2):155-166 (2020). [Google Scholar]
  10. J. M. Song, K.M., Ning, Z. Gao, Feasibility Study on Canceling Septic Tank in Building District of Shenzhen City. Guangdong Chem. Ind., 48(14):184-186 (2021). [Google Scholar]
  11. P. D. Hynds, B. D. Misstear, L.W. Gill, Development of a microbial contamination susceptibility model for private domestic groundwater sources. Water Resour. Res., 48(12) (2012). [CrossRef] [Google Scholar]
  12. K. M. Kiruthika, L. V. Rajkumar, A critical review of the recent trends in source tracing of microplastics in the environment. Environ. Res., 117394 (2023). [Google Scholar]
  13. Y. L. Sun, F. S. Wu, W. Q Li, Reflections on the centralized collection rate of municipal sewage pollutants and the influent concentration of wastewater treatment plants. Water & Wastewater Eng., 59(01):41-46 (2023). [Google Scholar]
  14. C. C. Gao, Y. I. Sun, Y. Mu, Deposition and Attenuation Law of Pollutants in Urban Residential Domestic Sewage and Its Impact. China Water & Wastewater, 39(03):67-72 (2023). [Google Scholar]
  15. G. Luan, J. Hou, T. Wang, D. Li, Q. Zhou, L. Liu,. A 1D-2D dynamic bidirectional coupling model for high-resolution simulation of urban water environments based on GPU acceleration techniques. J. Clean. Prod., 428, 139494 (2023). [CrossRef] [Google Scholar]
  16. L. T. Sang, X. Shi, T. Zhang, Law of Pollutant Erosion and Deposition in Urban Sewage Network. Environ. Sci., 38(05):1965-1971 (2017). [Google Scholar]
  17. Y. Gao, X. Shi,, , X., Jin, X. C. Wang, P. Jin, P. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems. Water Res. 228, 119398 (2023). [CrossRef] [PubMed] [Google Scholar]
  18. C. Liu, Y. He, H. P. Wei, A brief analysis of the sediment problem in urban drainage pipelines. Water & Wastewater Eng., (12):11-17 (1999). [Google Scholar]
  19. R. Ashley, B. Crabtree, A. Fraser, T. Hvitved-Jacobsen. European research into sewer sediments and associated pollutants and processes. J. Hydraul. Eng. 129(4), 267-275 (2003). [CrossRef] [Google Scholar]
  20. J. P. Heaney, L. D. Wright, R., Sample, Innovative wet-weather flow collection/control/treatment systems for newly urbanizing areas in the 21st century. ASCE, USA (1999). [Google Scholar]
  21. M. Ahyerre, G. Chebbo, M. Saad, Sources and erosion of organic solids in a combined sewer. Urban Water, 2(4):305-315 (2001). [Google Scholar]
  22. Y. L. Sun, Connotation and Way of Quality and Efficiency Improvement of Municipal Wastewater Treatment. China Water & Wastewater, 36(02):1-6 (2020). [Google Scholar]
  23. T. K. Kasonga, M. A. A. Coetzee, I. Kamika, V. M. Ngole-Jeme, & M. N. B. Momba. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. J. Environ. Manag. 277, 111485 (2021). [CrossRef] [Google Scholar]
  24. R. Sivaranjanee, and P. Senthil Kumar. A review on remedial measures for effective separation of emerging contaminants from wastewater. Environ. Technol. Innov. 23, 101741 (2021). [CrossRef] [Google Scholar]
  25. P. K. Jin, X. Z. Bian, D. Jiao, et al. Research on the deposition, erosion, and release patterns of pollutants in urban sewage pipelines. J. Safety Environ. 16(05):253-257 (2016). [Google Scholar]
  26. S. Elmaleh, S. Delgado, M. Alvarez, et al. Forecasting of H2S build-up in a reclaimed wastewater pipe. Water Sci. Technol., 38(10):41-47 (1998). [Google Scholar]
  27. G. De Feo, G. Antoniou, H. F. Fardin, F. El-Gohary, X. Y. Zheng, I. Reklaityte, D. Butler, S. Yannopoulos, & A. N. Angelakis. The historical development of sewers worldwide. Sustainability 6(6), 3936-3974 (2014). [CrossRef] [Google Scholar]
  28. W. Liu, and Z. Song. Review of studies on the resilience of urban critical infrastructure networks. Reliability Eng. Syst. Safety 193, 106617 (2020). [CrossRef] [Google Scholar]
  29. X. Shi, J. M. Tian, B. Ren, et al. Influence of flow regime changes on the distribution and transformation of sediment pollutants in sewer system. China Environ. Sci., 41(07):3275-3282 (2021). [Google Scholar]
  30. X. Shi, L. T. Sang, X. C. Wang, et al. Pollutant exchange between sewage and sediment in urban sewer systems. Chem. Eng. J., 351:240-247. [Google Scholar]
  31. M. Y. Li. Study on sediment deposition conditions and characteristics of pollutants present in urban drainage pipelines. Beijing Inst. Archit. Eng., China (2009). [Google Scholar]
  32. W. Zhang, J. Yu, W. Li, et al. Research and Analysis on Current Situation of Sedimentation in Drainage Pipelines in Guangzhou. Water & Wastewater Eng., 48(07):147-150 (2012). [Google Scholar]
  33. G. Chebbo, A. Bachoc, D. Laplace, et al. The Transfer of Solids in Combined Sewer Networks. Water Sci. Technol., 31(7):95-105 (1995). [CrossRef] [Google Scholar]
  34. Y. Gao, H. W. Wang, S. F. Zhang, et al. Current Research Progress in Combined Sewer Sediments and Their Models. China Water & Wastewater, 26(02):15-18+27 (2010). [Google Scholar]
  35. W. Zhang, Y. L. Sun, J. J. Li, et al. Technical progress and thinking on high-rate treatment of combined sewer overflow. Water & Wastewater Eng., 58(09):157-164 (2022). [Google Scholar]
  36. M. Clara, N. Kreuzinger, B. Strenn, O. Gans, & H. Kroiss. The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res. 39(1), 97-106 (2005). [CrossRef] [Google Scholar]
  37. X. F. Shi, Y. J. Lu, X. Y. Pan, et al. Research progress of technology, management, and policy on combined sewer system overflow control. Water & Wastewater Eng., 56(S1):740-747 (2020). [Google Scholar]
  38. L. Zhao, F. L. Yang, J. S. Wang, et al. Characterization of storm-water pollutant sources in a combined sewer network. Acta Sci. Circumstantiae, 8:1561-1570 (2008). [Google Scholar]
  39. H. Y. Li, S. L. Xu, X. X. Huang. Research on pollution load of combined drainage pipelines outflow in rainy season. Acta Sci. Circumstantiae, 33(9):2522-2530 (2013). [Google Scholar]
  40. A. Xu, Y. H. Wu, Z. Chen, G. Wu, Q. Wu, F. Ling, et al. “Towards the new era of wastewater treatment of China: development history, current status, and future directions.” Water Cycle 1, 80-87 (2020). [CrossRef] [Google Scholar]
  41. Y. Sun, Z. Chen, G. Wu, Q. Wu, F. Zhang, Z. Niu, & H. Y. Hu. Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management. J. Cleaner Prod. 131, 1-9 (2016). [CrossRef] [Google Scholar]
  42. X. G. Zhou, E. Q. Hui, S. H. Peng, et al. Investigation and analysis of BOD5 concentration for sewage plants and pipe network operation along The Yangtze River. Water & Wastewater Eng., 57(S1):129-133 (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.