Open Access
Issue |
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 9 | |
Section | Energy Management for Sustainable Environment | |
DOI | https://doi.org/10.1051/e3sconf/202449101014 | |
Published online | 21 February 2024 |
- Katakis, Ioannis, Grigorios Tsoumakas, and Ioannis Vlahavas. ”Multi-label text classification for automated tag suggestion.” ECML PKDDdiscoverychallenge 75(2008):2008. [Google Scholar]
- AReviewofStandardTextClassificationPracticesforMulti-labelToxicity Identification of Online Content (Gunasekara &Nejadgholi, ALW 2018) [Google Scholar]
- NamJ,KimJ,LozaMenc´ıaE,GurevychI,Fu¨rnkranzJ(2014)Large- scale multi-label text classification-revisiting neural networks. In: JointEuropean conference on machine learning and knowledge discovery indatabases.Springer,pp437–452 [Google Scholar]
- A. Fiallos and K. Jimenes, ”Using Reddit Data for Multi-Label TextClassification of Twitter Users Interests,” 2019 Sixth International Con-ference on eDemocracy& eGovernment (ICEDEG), Quito, Ecuador, 2019, pp.324–327 [CrossRef] [Google Scholar]
- Zaheri, Sara; Leath, Jeff; and Stroud, David (2020) ”Toxic CommentClassification,”SMUDataScienceReview:Vol.3:No.1,Article13. [Google Scholar]
- Wei-ChengChang,Hsiang-FuYu,KaiZhong,YimingYang,andInderjit [Google Scholar]
- S. Dhillon. 2020. Taming Pretrained Transformers for Extreme Multi-label Text Classification. In Proceedings of the 26th ACM SIGKDDInternationalConferenceonKnowledgeDiscovery&DataMining(KDD ’20). Association for Computing Machinery, New York, NY,USA,3163–3171. [Google Scholar]
- FrancescoGargiulo,StefanoSilvestri,MarioCiampi,GiuseppeDePietro ”Deep neural network for hierarchical extreme multi-label textclassification”, Applied Soft Computing, Volume 79, 2019, Pages 125–138, ISSN1568–4946. [CrossRef] [Google Scholar]
- Chalkidis, I., Fergadiotis, M., Malakasiotis, P., &Androutsopoulos, I.(2019).Large-scalemulti-labeltextclassificationonEUlegislation. [Google Scholar]
- Liu,J.,Chang,W.C.,Wu,Y.,&Yang,Y.(2017,August).Deeplearningfor extreme multi-label text classification. In Proceedings of the 40thinternational ACM SIGIR conference on research and development ininformationretrieval(pp.115–124). [Google Scholar]
- Rupapara,V.,Rustam,F.,Shahzad,H.F.,Mehmood,A.,Ashraf,I.,&Choi,G.S.(2021).ImpactofSMOTEonimbalancedtextfeaturesfor toxic comments classification using RVVC model. IEEE Access, 9,78621–78634. [CrossRef] [Google Scholar]
- Azzahra, Nadhia, Danang Murdiansyah, and Kemas Lhaksmana. ”ToxicCommentClassificationonSocialMediaUsingSupportVectorMachineand Chi Square Feature Selection.” International Journal on InformationandCommunicationTechnology(IJoICT)7.1(2021):64–76. [Google Scholar]
- Salunkhe, Shriya, and Kiran Bhowmick. ”Comparing Different MachineLearningTechniquesforClassifyingMultiLabelData.” [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.