Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 02045
Number of page(s) 14
Section Smart Systems for Environmental Development
DOI https://doi.org/10.1051/e3sconf/202449102045
Published online 21 February 2024
  1. Adamu, G. a. (2014). A mathematical model for the dynamics of Zika virus via homotopy perturbation method. Journal of Applied Sciences and Environmental Management, 21(4), 615-623. [Google Scholar]
  2. Aniji, M. a. (2019). Analytical solution of SEICR model for Hepatitis B virus using HPM. AIP Conference Proceedings.2112, p. 020024. AIP Publishing LLC. doi:https://doi.org/10.1063/1.5112209 [Google Scholar]
  3. Beay, L. K. (2017). Effects of human and mosquito migrations on the dynamical behavior of the spread of malaria. AIP Conference Proceedings.1825, p. 020006. AIP Publishing LLC. doi:https://doi.org/10.1063/1.4978975 [Google Scholar]
  4. he, J. H. (2005). Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons \& Fractals, 26, 695-700. [Google Scholar]
  5. He, J.-H. (1999). Homotopy perturbation technique. Computer methods in applied mechanics and engineering, 178, 257-262. [CrossRef] [Google Scholar]
  6. He, J.-H. (2000). A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International journal of non-linear mechanics, 35, 37-43. [CrossRef] [Google Scholar]
  7. He, J.-H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and computation, 135, 73-79. [Google Scholar]
  8. Hepatitis B. (n.d.). Retrieved from www.who.int/news-room/fact-sheets/detail/hepatitis-b: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b [Google Scholar]
  9. Hepatitis B Foundation. (n.d.). Retrieved from http://www.hepb.org: https://www.hepb.org/ [Google Scholar]
  10. Kamyad, A. V. (2014). Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus. Computational and mathematical methods in medicine. [Google Scholar]
  11. Peter, O. a. (2018). Homotopy perturbation method for solving sir infectious disease model by incorporating vaccination. The Pacific Journal of Science and Technology, 19(1), 133-140. [Google Scholar]
  12. Sivasamy, P. a. (2021). Approximate Analytical Solution Of Relapsing Remitting Multiple Sclerosis Using Homotopy Perturbation Method. NVEO-NATURAL VOLATILES \& ESSENTIAL OILS Journal| NVEO, 8, 2613-2624. [Google Scholar]
  13. Sivasamy, P. a. (2023). Theoretical Analysis on the Growth Kinetics of SARS-CoV (within host). Ratio Mathematica, 46, 178-193. http://dx.doi.org/10.23755/rm.v46i0.1074 [Google Scholar]
  14. Wiraningsih, E. D. (2015). Stability analysis of rabies model with vaccination effect and culling in dogs. Applied Mathematical Sciences, 9, 3805-3817. [CrossRef] [Google Scholar]
  15. Zhang, J. a. (2018). Application and optimal control for an HBV model with vaccination and treatment. Discrete Dynamics in Nature and Society. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.