Open Access
Issue
E3S Web Conf.
Volume 491, 2024
International Conference on Environmental Development Using Computer Science (ICECS’24)
Article Number 03016
Number of page(s) 13
Section Health Development
DOI https://doi.org/10.1051/e3sconf/202449103016
Published online 21 February 2024
  1. Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., … & Tada, T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 21, 653-660,2018. [PubMed] [Google Scholar]
  2. Pang, X., Zhao, Z., & Weng, Y. The role and impact of deep learning methods in computer-aided diagnosis using gastrointestinal endoscopy. Diagnostics, 11(4), 694,2021. [PubMed] [Google Scholar]
  3. Kuchkorov, T. A., Sabitova, N. Q., &Ochilov, T. D. DETECTION OF GASTRIC ULCERS AND LESIONS APPLYING CNN ARCHITECTURE. International Journal of Contemporary Scientific and Technical Research, 200-204,2022. [Google Scholar]
  4. Butt, J., Varga, M. G., Wang, T., Tsugane, S., Shimazu, T., Zheng, W., ... &Epplein, M. Smoking, Helicobacter pylori serology, and gastric cancer risk in prospective studies from China, Japan, and Korea. Cancer Prevention Research, 12(10), 667- 674,2019. [Google Scholar]
  5. Morais, S., Peleteiro, B., Araújo, N., Malekzadeh, R., Ye, W., Plymoth, A., … & Lunet, N. Identifying the Profile of Helicobacter pylori–Negative Gastric Cancers: A CaseOnly Analysis within the Stomach Cancer Pooling (StoP) Project. Cancer Epidemiology, Biomarkers & Prevention, 31(1), 200-20,2022.. [Google Scholar]
  6. Kim, Bokyung, Kyungdo Han, Hyunsoo Chung, Sang Gyun Kim, and Soo-Jeong Cho. "Lower risk of depression after smoking cessation and alcohol abstinence in patients with gastric cancer who underwent gastrectomy: A population-based nationwide cohort study." 314-314,2023. [Google Scholar]
  7. Mensing, Anna, and Marcoandrea Giorgi. "Obesity and cancer of the upper gastrointestinal tract." In The Link Between Obesity and Cancer, pp. 179-185. Academic Press, 2023. [Google Scholar]
  8. Gao, L., Yang, T., Xue, Z., & Chan, C. K. D. Hot Spots and Trends in the Relationship between Cancer and Obesity: A Systematic Review and Knowledge Graph Analysis. Life, 13(2), 337,2023. [PubMed] [Google Scholar]
  9. Lim, J. H., Shin, C. M., Han, K. D., Lee, S. W., Jin, E. H., Choi, Y. J., … & Lee, D. H. Association between the persistence of obesity and the risk of gastric Cancer: a Nationwide population-based study. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 54(1), 199-207,2022. [Google Scholar]
  10. Jang, J., & Kim, N. Sex/Gender-Specific Medicine for Impact of Overweight, Obese, and Underweight on Gastric Cancer. Sex/Gender-Specific Medicine in the Gastrointestinal Diseases, 169-181,2022. [CrossRef] [Google Scholar]
  11. Li, W. Q., Qin, X. X., Li, Z. X., Wang, L. H., Liu, Z. C., Fan, X. H., … & Pan, K. F. Beneficial effects of endoscopic scree [Google Scholar]
  12. ning on gastric cancer and optimal screening interval: a population-based study. Endoscopy, 54(09), 848-858,2022. [Google Scholar]
  13. Jamil, D., Palaniappan, S., Lokman, A., Naseem, M., & Zia, S. S. Diagnosis of Gastric Cancer Using Machine Learning Techniques in Healthcare Sector: A Survey. Informatica, 45(7),2022. [Google Scholar]
  14. Luu, X. Q., Lee, K., Jun, J. K., Suh, M., Jung, K. W., Choi, I. J., & Choi, K. S. Risk of upper gastrointestinal cancer and death in persons with negative screening results: results from the National Cancer Screening Program in South Korea. Gastric Cancer, 1-10,2023. [Google Scholar]
  15. Messmann, H., Bisschops, R., Antonelli, G., Libânio, D., Sinonquel, P., Abdelrahim, M., … & Dinis-Ribeiro, M. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy, 54(12), 1211-1231,2022. [Google Scholar]
  16. Sugimoto, M., Kawai, Y., Morino, Y., Hamada, M., Iwata, E., Niikura, R., … & Kawai, T. Efficacy of high-vision transnasal endoscopy using texture and colour enhancement imaging and narrow-band imaging to evaluate gastritis: a randomized controlled trial. Annals of Medicine, 54(1), 1004-1013,2022. [PubMed] [Google Scholar]
  17. B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker, K. H. Cha, et al., "Deep learning in medical imaging and radiation therapy," Medical physics, vol. 46, pp. e1-e36, 2019. [CrossRef] [Google Scholar]
  18. He, X., Wu, L., Dong, Z., Gong, D., Jiang, X., Zhang, H., … & Yu, H. Real-time use of artificial intelligence for diagnosing early gastric cancer by magnifying imageenhanced endoscopy: a multicenter diagnostic study (with videos). Gastrointestinal Endoscopy, 95(4), 671-678, 2022. [Google Scholar]
  19. Nakayama, I., Takahari, D., Shimozaki, K., Chin, K., Wakatsuki, T., Ogura, M., … & Yamaguchi, K. Clinical progress in inoperable or recurrent advanced gastric cancer treatment from 1004 single institute experiences between 2007 and 2018. The Oncologist, 27(6), e506-e517 2022. [CrossRef] [PubMed] [Google Scholar]
  20. Gholami, E., & Tabbakh, S. R. K. Increasing the accuracy in the diagnosis of stomach cancer based on color and lint features of tongue. Biomedical Signal Processing and Control, 69, 102782,2021. [Google Scholar]
  21. TANI, L. F. K., TANI, M. Y. K., & KADRI, B. Gas-Net: A deep neural network for gastric tumor semantic segmentation. AIMS Bioengineering, 9(3), 266-282,2022. [Google Scholar]
  22. Martin, D. R., Hanson, J. A., Gullapalli, R. R., Schultz, F. A., Sethi, A., & Clark, D. P. A deep learning convolutional neural network can recognize common patterns of injury in gastric pathology. Archives of pathology & laboratory medicine, 144(3), 370- 378,2020. [PubMed] [Google Scholar]
  23. Fujiyoshi, M. R. A., Inoue, H., Fujiyoshi, Y., Nishikawa, Y., Toshimori, A., Shimamura, Y., ... &Onimaru, M. Endoscopic classifications of early gastric cancer: A literature review. Cancers, 14(1), 100,2022. [PubMed] [Google Scholar]
  24. Carmichael, L., Rocca, R., Laing, E., Ashford, P., Collins, J., Jackson, L., … & Kiss, N. Early postoperative feeding following surgery for upper gastrointestinal cancer: A systematic review. Journal of Human Nutrition and Dietetics, 35(1), 33-48,2022. [PubMed] [Google Scholar]
  25. Ono, S., Ishikawa, M., Matsuda, K., Tsuda, M., Yamamoto, K., Shimizu, Y., & Sakamoto, N. Clinical impact of the perioperative management of oral anticoagulants in bleeding after colonic endoscopic mucosal resection. BMC gastroenterology, 19, 1- 8,2019. [PubMed] [Google Scholar]
  26. Li, L., Chen, Y., Shen, Z., Zhang, X., Sang, J., Ding, Y., … & Yu, C.Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer, 23, 126-132,2020. [Google Scholar]
  27. Chen, P. C., Lu, Y. R., Kang, Y. N., & Chang, C. C. The Accuracy of Artificial Intelligence in the Endoscopic Diagnosis of Early Gastric Cancer: Pooled Analysis Study. Journal of Medical Internet Research, 24(5), e27694,2022. [PubMed] [Google Scholar]
  28. Koyama, Y., Sugimoto, M., Kawai, T., Mizumachi, M., Yamanishi, F., Matsumoto, S., ... &Itoi, T. Visibility of early gastric cancers by texture and color enhancement imaging using a high-definition ultrathin transnasal endoscope. Scientific Reports, 13(1), 1994,2023. [Google Scholar]
  29. Horiuchi, Y., Hirasawa, T., Ishizuka, N., Tokura, J., Ishioka, M., Tokai, Y., … & Fujisaki, J.Evaluation of microvascular patterns alone using endocytoscopy with narrow-band imaging for diagnosing gastric cancer. Digestion, 103(2), 159-168,2022. [PubMed] [Google Scholar]
  30. Canakis, A., Bomman, S., Twery, B., Varghese, N., Ji, B., & Goldberg, E. M. EFFICACY OF ENDOCYTOSCOPY FOR IN-VIVO DETECTION OF GASTRIC CANCER: A SYSTEMATIC REVIEW AND META-ANALYSIS. Gastrointestinal Endoscopy, 95(6), AB467, 2022. [Google Scholar]
  31. Wang, W. L., Wang, H. P., Han, M. L., & Lee, C. T. New-generation endocytoscopy for optical characterization of elevated-type early gastric cancer. Endoscopy, 54(09), E472-E473,2022. [Google Scholar]
  32. Ikenoyama, Y., Hirasawa, T., Ishioka, M., Namikawa, K., Yoshimizu, S., Horiuchi, Y., … & Tada, T. Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Digestive Endoscopy, 33(1), 141-150,2021. [PubMed] [Google Scholar]
  33. Cao, G., Song, W., & Zhao, Z. Gastric cancer diagnosis with mask R-CNN. In 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (Vol. 1, pp. 60-63). IEEE 2019. [Google Scholar]
  34. Mushtaq, D., Madni, T. M., Janjua, U. I., Anwar, F., &Kakakhail, A. An automatic gastric polyp detection technique using deep learning. International Journal of Imaging Systems and Technology, 2023. [PubMed] [Google Scholar]
  35. Kim JH and Yoon HJ Lesion-based convolutional neural network in diagnosis of early gastric cancer. Clin Endosc 53: 127–131,2020. [PubMed] [Google Scholar]
  36. Bang, C. S., Cho, B. J., & Baik, G. H. AUTOMATED CLASSIFICATION OF GASTRIC NEOPLASMS IN ENDOSCOPIC IMAGES USING A CONVOLUTIONAL NEURAL NETWORK. Endoscopy, 52(S 01), eP295_1,2020. [Google Scholar]
  37. Kamada, T., Maruyama, Y., Monobe, Y., & Haruma, K. Endoscopic features and clinical importance of autoimmune gastritis. Digestive Endoscopy, 34(4), 700- 713,2022. [PubMed] [Google Scholar]
  38. Niikura, R., Aoki, T., Shichijo, S., Yamada, A., Kawahara, T., Kato, Y., … & Koike, K. Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy. Endoscopy, 54(08), 780-784,2022. [PubMed] [Google Scholar]
  39. Yao, Z., Jin, T., Mao, B., Lu, B., Zhang, Y., Li, S., & Chen, W. Construction and multicenter diagnostic verification of intelligent recognition system for endoscopic images from early gastric cancer based on YOLO-V3 algorithm. Frontiers in Oncology, 12, 64,2022. [Google Scholar]
  40. Hamada, K., Kawahara, Y., Tanimoto, T., Ohto, A., Toda, A., Aida, T., … & Okada, H. Application of convolutional neural networks for evaluating the depth of invasion of early gastric cancer based on endoscopic images. Journal of Gastroenterology and Hepatology, 37(2), 352-357,2022. [PubMed] [Google Scholar]
  41. Ma, L., Su, X., Ma, L., Gao, X., & Sun, M. Deep learning for classification and localization of early gastric cancer in endoscopic images. Biomedical Signal Processing and Control, 79, 104200,2023. [Google Scholar]
  42. Qiu, W., Xie, J., Shen, Y., Xu, J., & Liang, J. Endoscopic image recognition method of gastric cancer based on deep learning model. Expert Systems, 39(3), e12758,2022. [Google Scholar]
  43. Ochiai, K., Ozawa, T., Shibata, J., Ishihara, S., & Tada, T. Current Status of Artificial Intelligence-Based Computer-Assisted Diagnosis Systems for Gastric Cancer in Endoscopy. Diagnostics, 12(12), 3153,2022. [PubMed] [Google Scholar]
  44. Yang, H., Guan, L., & Hu, B. The potential role of artificial intelligence besides predicting gastric cancer invasion depth. Gastrointestinal Endoscopy, 97(1), 149,2023. [PubMed] [Google Scholar]
  45. Ortigão, R., Libânio, D., & Dinis‐Ribeiro, M. The future of endoscopic resection for early gastric cancer. Journal of Surgical Oncology, 125(7), 1110-1122,2022. [Google Scholar]
  46. Zhou, B., Rao, X., Xing, H., Ma, Y., Wang, F., & Rong, L. A convolutional neural network-based system for detecting early gastric cancer in white-light endoscopy. Scandinavian Journal of Gastroenterology, 1-6, 2022 [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.